18,058 research outputs found

    Teaching statistical physics by thinking about models and algorithms

    Full text link
    We discuss several ways of illustrating fundamental concepts in statistical and thermal physics by considering various models and algorithms. We emphasize the importance of replacing students' incomplete mental images by models that are physically accurate. In some cases it is sufficient to discuss the results of an algorithm or the behavior of a model rather than having students write a program.Comment: 21 pages, 4 figures, submitted to the American Journal of Physic

    Longitudinal Oscillations in Bounded Magnetoplasmas

    Get PDF
    Fine structure in absorption due to Buchsbaum-Hasegawa modes is observed over a wider range of magnetic fields than previously reported (omegac/omega = 0.5−0.985). The basic theory is satisfactory only near the cyclotron harmonic

    The contraction of molecular hydrogen protostars

    Get PDF
    Molecular hydrogen protostar contraction - stellar evolutio

    Breakdown of helium nuclei in matter processed near black holes

    Get PDF
    The rate of breakup of helium nuclei by particle induced reactions is computed. It is shown that the rate is determined by the endothermic reaction p + 4He 3He + d, becoming effective at kT approx. few MeV. It is suggested that matter having been processed to these temperatures will be depleted in helium and in the elements C, N, O, and Ne

    Phase space factors in multiparticle processes

    Get PDF
    General phase space theorems are discussed for the cases (A) with only energy conservation applied and (B) with energy and momentum conservation applied. It is shown that in the non-relativistic limit for N particles there is a very close relationship between the multiparticle phase space integral in case B and that for case A and N-1 particles

    Waves in a hot uniaxial plasma excited by a current source

    Get PDF
    The fields excited by a short dipole antenna in a hot uniaxially anisotropic plasma (B_0→∞) have been studied. When ω<ω_p, the dipole effectively excites two propagating waves, a slow wave and a fast wave, inside a cone of half‐cone angle sin^(−1)(ω/ω_p). Inside the cone a characteristic interference structure in the angular distribution of the fields is noted. Outside the cone fields fall off exponentially. The appearance of the cone and the characteristic interference structure in the field is useful from the viewpoint of laboratory diagnostics

    Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes

    Get PDF
    Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors

    Verbal Phrases in Lhasa Tibetan--I

    Get PDF
    corecore