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ABSTRACT

General phase space theorems are discussed for the

cases (A) with only energy conservation applied

and (B) with energy and momentum conservation

applied. It is shown that in the non-relativistic

limit for N particles there is a very close relation-

ship between the multiparticle phase space integral

in case B and that for case A and N-I particles.

i. Introduction. There are in physics many phenomena that can be

described as phase space effects. By this is meant effects that are

determined essentially by the number of states available to the system.

Examples may be found in equilibrium statistical mechanics and in the

evaluation of dynamical processes. In particular, the cross sections

and rates associated with processes initiated by binary collisions are

determined by the interaction that causes the process and also by the

number of final states associated with the various products or channels

for the reaction. Applications or examples of this kind of effect occur

in electronic and atomic processes, chemical kinetics, nuclear reactions,

and elementary particle processes. All of these processes can be repre-

sented as a reaction of the type

a + b---+ products (c + d + e +...) . (i)

In the c.m. frame and for given energy (E) available to the

outgoing particles, the total momentum-space volume available to these

particles is, with momentum and energy conservation imposed,

_(N) = f... f d 6(3)( E pj) 6 ( E E. - E). (2)j=l J j=l_' j=l J

This quantity, proportional to the number(_m_ available final states, is
fundamental and simple expressions for _ can be derived for small

N when the outgoing particles are non-relativistic (NR), extremely-

relativistic (ER), or even of general energy. When all are NR o_ ER

(or even a mixture), it is possible to derive expressions for _(N) for

general N , using various mathematical methods or tricks. One such

trick will be illustrated in this paper.

In the limit where one of the outgoing particles (say, particle

• N) has a larg_^_ass, its energy (_N2/2mN) is small and can be neglected.

Then, the 6_jJ function can be'eliminated by integrating over d3p N ,
and

N-I N-I

_(N) _ _(N-I) = f... f _ d3p 6( _ E - E); (3)

mN_g j-I _ j=l j
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that is, the heavy particle just plays the role of satisfying the momen-

tum-conservation restriction. The phase space integral (3), with only

the energy-conservation restriction applied is the one appearing in
statistical mechanics in the so-called microcanonical ensemble. It

_(N)turns out, however, that, in the NR limit, _ is very closely

related to _(N-I) for an arbitrary distribution of masses ml, m2,...,
mN; we shall demonstrate this in a simple way.

Before proceeding to consider the very special problem

mentioned just above, a few other introductory remarks should be made.

In _odern particle physics the use of the invariant pha_e space volume

_(N) is more common; this quantity is the same as _(N) except each

factor d3pi is divided by 2E. , yielding Lorentz-invariant factors;

the two 6_{_nctions are also combined to a single invariant 8(4) factor.

The factors % are certainly more convenient than _ in relativistic

calculations, but it is not clear which is actually more fundamental.

In a sense _ is, since it is proportional to the number of states. For

examples of the use of the invariant #-factors the book by Perl [i] may

be consulted; this work also gives references to earlier papers on the

general subject. A general survey is also given in a monograph [2] in

preparation by the author.

2. General Expressions: NR Limit. If we make the change of variable

,pj = (2Emj)i/2x3_. , (4)

thereby introducing dimensionless momentum variables x= , the integralJ
can be written in more convenient form. It is also convenient to intro-

duce dimensionless masses in terms of the total mass M :

2 M ; N
= _ E _j2 = i . (5)mj

j=l

Then, in the NR limit,

_(N) = (2M)B(N,I)/2 ( NE _.)3E3(N-I)/2-1 IN (5)
j=l J

where

N (3) N N 2
IN = i''" f _ dBx _ ( E v.x.) 6 ( E x. - i) (7)

j=l ....J j=l_'_J j=l_J

is a dimensionless integral. In terms of the variables ,xj and para-
meters _. , the phase space integral _ [eq. (3)] is

J

_(N) = (2M)3N/2( _ _ )3E3N/2-1 J (8)

j=l j N '

where

N N 2

JN = f''" f E d3x" 6 ( E x. - i) . (9)
j=l "J j=l-J

In the following section we shall outline the proof that
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IN = JN-I (I0)

This is, at first sight, a remarkable result that means, for example,

that IN is independent of the mass spectrum _I,_2,...,_N . The inte-

gral (9) for JN can be evaluated easily by a number of methods (see
[2] or almost any book on statistical mechanics):

JN = _3N/2F(3N/2) " (ii)

3. Theorem [eq. (I0)] on Phase Space Integrals. The theorem is easy to

prove for N=2 and 3, but it is of interest to prove it for general N .

This can be done by considering the indices J=l, 2, ..., N labelling

the particles as designating an N-dimensional space. With _ as a

unit vector along the jth axis of this space, the axes are _aken to be

orthogonal: g"_k = 6"k* In this space 0 = (vI,V2,...,gN) is a vec-
tor of unit length: 0_0 = 1 , because of (5). Also, in terms of

= _i'_2'''' '_N )' and

N

d3_ = _ d3x. = dXl...dXNdYl...dYNdZl...dz N (].2)
_ j=l "3

the integral (7) can be written

IN = /d38 6(_ 2 - 1)6(3)(0"8) (13)

But _._ is invariant to a rotation of the axes in the N-dimensional

space, as is _2 Essentially, such a rotation corresponds to a

relabelling of the particles. With this invariance, it is convenient to

choose an orientation such that the vector _ is along one axis such

that, say, 0 = (0,0,...,i) corresponding, physically, to the case

mN >> mj> N. The 6-function 6(3) 3is then simply 6(3)(XN) which can be
eliminate_ by integration over d xN . The resulting integral is then

just JN-I and the identity (i0) is obtained.

It is interesting how in this problem we make use of the mass

spectrum ml,m2,...,m N to prove a theorem and simplify a derivation.

In the ER limit we h_v_ no such device to employ and the evaluation of
the corresponding _ N is more complicated. However, the same trick

employed to prove the result (i0) can be used to derive results when we

have, say, N NR particles and N' ER particles. For more details, see

[2].
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