375 research outputs found

    The Dynamics of Return Migration, Human Capital Accumulation, and Wage Assimilation

    Get PDF
    This paper develops and estimates a dynamic model where individuals differ in ability and location preference to evaluate the mechanisms that affect the evolution of immigrants’ careers in conjunction with their re-migration plans. Our analysis highlights a novel form of selective return migration where those who plan to stay longer invest more into skill acquisition, with important implications for the assessment of immigrants’ career paths and the estimation of their earnings profiles. Our study also explains the willingness of immigrants to accept jobs at wages that seem unacceptable to natives. Finally, our model provides important insight for the design of migration policies, showing that policies which initially restrict residence or condition residence on achievement shape not only immigrants’ career profiles through their impact on human capital investment but also determine the selection of arrivals and leavers

    Knowledge, Food and Place: a way of producing a way of knowing

    Get PDF
    The article examines the dynamics of knowledge in the valorisation of local food, drawing on the results from the CORASON project (A cognitive approach to rural sustainable development: the dynamics of expert and lay knowledge), funded by the EU under its Framework Programme 6. It is based on the analysis of several in-depth case studies on food relocalisation carried out in 10 European countries

    Mechanosensitive Expression of a Lipoxygenase Gene in Wheat

    Full text link

    Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The phenomena manifested during inflammation require interplay between circulating effector cells, local resident cells, soluble mediators and genetic host factors to establish, develop and maintain itself. Of the molecues involed in the initiation and perpetuation of acute allergic inflammation in asthma, the involvement of effector cells in redox reactions for producing O<sub>2</sub><sup>- </sup>(superoxide anion) through the mediation of NADPH oxidase is a critical step. Prior data suggest that reactive oxygen species (ROS) produced by NADPH oxidase homologues in non-phagocytic cells play an important role in the regulation of signal transduction, while macrophages use a membrane-associated NADPH oxidase to generate an array of oxidizing intermediates which inactivate MMPs on or near them.</p> <p>Materials and Methods and Treatment</p> <p>To clarify the role of gp91phox subunit of NADPH oxidase in the development and progression of an acute allergic asthma phenotype, we induced allergen dependent inflammation in a gp91<it><sup>phox</sup></it>-/- single knockout and a gp91phox-/-MMP-12-/- double knockout mouse models.</p> <p>Results</p> <p>In the knockout mice, both inflammation and airway hyperreactivity were more extensive than in wildtype mice post-OVA. Although OVA-specific IgE in plasma were comparable in wildtype and knockout mice, enhanced inflammatory cell recruitment from circulation and cytokine release in lung and BALf, accompanied by higher airway resistance as well as Penh in response to methacholine, indicate a regulatory role for NADPH oxidase in development of allergic asthma. While T cell mediated functions like Th2 cytokine secretion, and proliferation to OVA were upregulated synchronous with the overall robustness of the asthma phenotype, macrophage upregulation in functions such as proliferation, and mixed lymphocyte reaction indicate a regulatory role for gp91phox and an overall non-involvement or synergistic involvement of MMP12 in the response pathway (comparing data from gp91phox-/- and gp91phox-/-MMP-12-/- mice).</p

    Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo

    Get PDF
    Background: Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1 following endothelial injury. Methods: An ELISA for the measurement of HIF in cell-culture medium and plasma was optimized, and the assay used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 hours. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results: The HIF-1α ELISA had a limit of detection of 2.7 pg/ mL and was linear up to 1000 pg/ mL. Between and within-assay coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -800C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion: HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall

    Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography

    Get PDF
    Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail

    A novel hybrid promoter responsive to pathophysiological and pharmacological regulation

    Get PDF
    The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli

    From endoplasmic-reticulum stress to the inflammatory response

    Full text link
    The endoplasmic reticulum is responsible for much of a cell's protein synthesis and folding, but it also has an important role in sensing cellular stress. Recently, it has been shown that the endoplasmic reticulum mediates a specific set of intracellular signalling pathways in response to the accumulation of unfolded or misfolded proteins, and these pathways are collectively known as the unfolded-protein response. New observations suggest that the unfolded-protein response can initiate inflammation, and the coupling of these responses in specialized cells and tissues is now thought to be fundamental in the pathogenesis of inflammatory diseases. The knowledge gained from this emerging field will aid in the development of therapies for modulating cellular stress and inflammation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62741/1/nature07203.pd

    Hyperthermia Induces the ER Stress Pathway

    Get PDF
    The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection
    corecore