326 research outputs found

    Perturbation theory for the modified nonlinear Schr{\"o}dinger solitons

    Full text link
    The perturbation theory based on the Riemann-Hilbert problem is developed for the modified nonlinear Schr{\"o}dinger equation which describes the propagation of femtosecond optical pulses in nonlinear single-mode optical fibers. A detailed analysis of the adiabatic approximation to perturbation-induced evolution of the soliton parameters is given. The linear perturbation and the Raman gain are considered as examples.Comment: 22 pages, Latex, no figures. Submitted to Physica

    The effect of floor type on the performance, cleanliness, carcass characteristics and meat quality of dairy origin bulls

    Get PDF
    Publication history: Accepted - 8 August 2017; Published online - 2 October 2017The aim of this study was to evaluate the effect of using different floor types to accommodate growing and finishing beef cattle on their performance, cleanliness, carcass characteristics and meat quality. In total, 80 dairy origin young bulls (mean initial live weight 224 kg (SD=28.4 kg)) were divided into 20 blocks with four animals each according to live weight. The total duration of the experimental period was 204 days. The first 101 days was defined as the growing period, with the remainder of the study defined as the finishing period. Cattle were randomly assigned within blocks to one of four floor type treatments, which included fully slatted flooring throughout the entire experimental period (CS); fully slatted flooring covered with rubber strips throughout the entire experimental period (RS); fully slatted flooring during the growing period and moved to a solid floor covered with straw bedding during the finishing period (CS-S) and fully slatted flooring during the growing period and moved to fully slatted flooring covered with rubber strips during the finishing period (CS-RS). Bulls were offered ad libitum grass silage supplemented with concentrates during the growing period. During the finishing period, bulls were offered concentrates supplemented with chopped barley straw. There was no significant effect of floor type on total dry matter intake (DMI), feed conversion ratio, daily live weight gain or back fat depth during the growing and finishing periods. Compared with bulls accommodated on CS, RS and CS-RS, bulls accommodated on CS-S had a significantly lower straw DMI (P<0.01). Although bulls accommodated on CS and CS-S were significantly dirtier compared with those accommodated on RS and CS-RS on days 50 (P<0.05) and 151 (P<0.01), there was no effect of floor type on the cleanliness of bulls at the end of the growing and finishing periods. There was also no significant effect of floor type on carcass characteristics or meat quality. However, bulls accommodated on CS-S had a tendency for less channel, cod and kidney fat (P=0.084) compared with those accommodated on CS, RS and CS-RS. Overall, floor type had no effect on the performance, cleanliness, carcass characteristics or meat quality of growing or finishing beef cattle.This research project was funded by the Department of Agriculture, Environment and Rural Affairs in Northern Irelan

    Quantum coherence in a degenerate two-level atomic ensemble: for a transition Fe=0Fg=1F_e=0\leftrightarrow F_g=1

    Full text link
    For a transition Fe=0Fg=1F_e=0\leftrightarrow F_g=1 driven by a linearly polarized light and probed by a circularly light, quantum coherence effects are investigated. Due to the coherence between the drive Rabi frequency and Zeeman splitting, electromagnetically induced transparency, electromagnetically induced absorption, and the transition from positive to negative dispersion are obtained, as well as the populations coherently oscillating in a wide spectral region. At the zero pump-probe detuning, the subluminal and superluminal light propagation is predicted. Finally, coherent population trapping states are not highly sensitive to the refraction and absorption in such ensemble.Comment: 9 pages, 6 figure

    Fast multi-computations with integer similarity strategy

    Get PDF
    Abstract. Multi-computations in finite groups, such as multiexponentiations and multi-scalar multiplications, are very important in ElGamallike public key cryptosystems. Algorithms to improve multi-computations can be classified into two main categories: precomputing methods and recoding methods. The first one uses a table to store the precomputed values, and the second one finds a better binary signed-digit (BSD) representation. In this article, we propose a new integer similarity strategy for multi-computations. The proposed strategy can aid with precomputing methods or recoding methods to further improve the performance of multi-computations. Based on the integer similarity strategy, we propose two efficient algorithms to improve the performance for BSD sparse forms. The performance factor can be improved from 1.556 to 1.444 and to 1.407, respectively

    Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

    Full text link
    Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations

    Electron Scattering From High-Momentum Neutrons in Deuterium

    Full text link
    We report results from an experiment measuring the semi-inclusive reaction d(e,eps)d(e,e'p_s) where the proton psp_s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass WW^{*}, backward proton momentum ps\vec{p}_{s} and momentum transfer Q2Q^{2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' F2neffF_{2n}^{eff} was extracted as a function of WW^{*} and the scaling variable xx^{*} at extreme backward kinematics, where effects of FSI appear to be smaller. For ps>400p_{s}>400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F2neffF_{2n}^{eff} in the region of xx^{*} between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1 Referenc

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    corecore