390 research outputs found
Force-free magnetosphere of an aligned rotator with differential rotation of open magnetic field lines
Here we briefly report on results of self-consistent numerical modeling of a
differentially rotating force-free magnetosphere of an aligned rotator. We show
that differential rotation of the open field line zone is significant for
adjusting of the global structure of the magnetosphere to the current density
flowing through the polar cap cascades. We argue that for most pulsars
stationary cascades in the polar cap can not support stationary force-free
configurations of the magnetosphere.Comment: 5 pages, 4 figures. Presented at the conference "Isolated Neutron
Stars: from the Interior to the Surface", London, April 24-28, 2006; to
appear in Astrophysics and Space Science. Significantly revised version, a
mistake found by ourselfs in the numerical code was corrected, all presented
results are obtained with the correct version of the cod
Robust H-infinity filtering for 2-D systems with intermittent measurements
This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac
The moral reasoning abilities of Australian and Malaysian accounting students : a comparative analysis
If national culture is a significant determinant of ethical attitudes, it is not unreasonable to expect ethical decision-making to be influenced by one\u27s culture. However, problems arise when the notion of right differs from one culture to another. The question addressed in this paper is whether the moral reasoning abilities of Australian and Malaysian accounting students in their final year of study differ because of their cultural upbringing. This study uses primary data collected from 34 final year accounting students (12 Australian and 22 Malaysian) enrolled in an Australian degree program. The test scores collected at the beginning and end of the academic year indicate that culture and other explanatory variables do not have an affect on students\u27 moral judgment. The findings in this study suggest that culture as an independent variable does not influence the way accounting students analyse and resolve ethical dilemmas.<br /
Block bond-order potential as a convergent moments-based method
The theory of a novel bond-order potential, which is based on the block
Lanczos algorithm, is presented within an orthogonal tight-binding
representation. The block scheme handles automatically the very different
character of sigma and pi bonds by introducing block elements, which produces
rapid convergence of the energies and forces within insulators, semiconductors,
metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of
moments. Our use of the Lanczos basis simplifies the calculations of the band
energy and forces, which allows the application of the method to the molecular
dynamics simulations of large systems. As an illustration of this convergent
O(N) method we apply the block bond-order potential to the large scale
simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Back to the future : using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate
Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this
- …