2,863 research outputs found

    Renovascular hypertension: a case with atypical neurological signs

    Get PDF
    Secondary hypertension is the most frequent form of hypertension in children. Renovascular disease accounts for 5-10% of all childhood hypertension and should be suspected in the presence of severe hypertension found difficult to manage with medical therapy. Uncontrolled hypertension can lead to severe target organ damage. We describe the case of a 13-month-old baby boy with failure to thrive, recent muscular weakness of the lower extremities and irritability. Hypertension was detected and he was admitted to the paediatric intensive care unit with a refractory hypertensive emergency, despite multiple antihypertensive therapies. Bilateral renal artery stenosis was diagnosed through renal angiography and balloon dilation was performed, leading to lower blood pressure. He is currently withdrawing from antihypertensive medication, and slowly gaining weight and recovering from target organ damage. However, weakness of the lower extremities persists and he has been diagnosed with a neurogenic bladde

    Slipped Capital Femoral Epiphysis. A Report of 4 Cases Occurring in One Family

    Get PDF
    We describe slipped capital femoral epiphysis in 4 members of a black, obese family, who were all first-degree relatives. The aetiology of slipped capital femoral epiphysis is unknown, although it is thought to be multifactorial. Genetic predisposition and environmental factors have been associated with the condition. A familial incidence with at least two cases in the same family has been reported. In epidemiological studies, this incidence ranges from 3% to 35%. Our cases were investigated in an attempt to find a possible aetiological genetic factor. A genetic predisposition with an autosomal dominant pattern of transmission is suggested, although environmental variables must be considered as provocative factors

    Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    Get PDF
    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making

    Potent hepatoprotective effect in CCl4-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora

    Get PDF
    Background: This study investigated the hepatoprotective effect and antioxidant properties of phloroacetophenone (2',4',6'-trihydroxyacetophenone - THA), an acetophenone derived from the plant Myrcia multiflora. Material & Method: The free radical scavenging activity in vitro and induction of oxidative hepatic damage by carbon tetrachloride (CCl4) (0.5 ml/kg, i.p.) were tested in male Swiss mice (2595 g). Results: This compound exhibited in vitro antioxidant effects on FeCl2-ascorbate-induced lipid peroxidation (LPO) in mouse liver homogenate, scavenging hydroxyl and superoxide radicals, and 2,2-diphenyl-1-picrylhydrazyl. The in vivo assays showed that THA significantly (p<0.01) prevented the increases of hepatic LPO as measured by the levels of thiobarbituric acid-reactive substances, mitochondrial swelling. It also protected hepatocytes against protein carbonylation and oxidative DNA damage. Consistent with these observations, THA pre-treatment normalized the activities of antioxidant enzymes, such as catalase, glutathione peroxidase, and superoxide dismutase, and increased the levels of reduced glutathione (GSH) in CCl4-treated mice. In addition, THA treatment significantly prevented the elevation of serum enzymatic activities of alanine amino transferase, aspartate amino transferase, and lactate dehydrogenase, as well as histological alterations induced by CCl4. Silymarin (SIL) (24 mg/kg), a known hepatoprotective drug used for comparison, led to a significant decrease (p<0.01) in activities of theses enzymes in way very similar to that observed in pre-treatment with THA. Conclusion: These results suggest that the protective effects are due to reduction of oxidative damage induced by CCl4 resulting from the antioxidant properties of THA.Keywords: antioxidant; hepatoprotective; 2',4',6'-trihydroxyacetophenone; Myrcia multiflora; CCl4; Silymari

    Brazilian Bidens pilosa Linne´ yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects

    Get PDF
    Bidens pilosa is a plant used by Amazonian and Asian folks for some hepatopathies. The hydroethanol crude extract and three fractions were assessed for antioxidant and hepatoprotective effects. Higher levels of scavenger activity on the 1,1-diphenyl-2-picrylhydrazyl radical, inhibition of deoxyribose oxidation and lipid peroxidation in vitro were detected for the ethyl acetate fraction (IC50∼4.3-32.3 mg/ml) followed by the crude extract (IC50∼14.2-98.0 mg/ml). The ethyl acetate fraction, again followed by the crude extract, showed high contents of total soluble polyphenols (3.6±0.2 and 2.1±0.2 GAE/mg, respectively) and presence of a quercetin-derived flavonoid identified as quercetin 3,3′-dimethyl ether 7-Ο-β-D-glycopyranoside. Both products were assayed for hepatoprotector effects against CCl4-induced liver injury in mice. Markers of oxidative stress and hepatic injury were evaluated. The results showed that the 10-day pretreatments (15 mg/kg, p.o.) protected the livers against injury by blocking CCl4-induced lipid peroxidation and protein carbonylation and the DNA fragmentation was decreased (∼60%). The pretreatments avoided the loss of the plasma ferric reducing/antioxidant power and the elevation of serum transaminases and lactate dehydrogenase activities. The results suggest that the main constituents responsible for the hepatoprotective effects with free radical scavenger power associated are well extracted by performing fractionation with ethyl acetate. The findings support the Brazilian traditional use of this plant and justify further evaluations for the therapeutic efficacy and safety of the constituents of the ethyl acetate fraction to treat some liver diseases.Keywords: Bidens pilosa L.; hydroethanol maceration; ethyl acetate fractionation; free radical scavenger; hepatoprotection; CCl4 toxicit

    Supersymmetry Flows, Semi-Symmetric Space Sine-Gordon Models And The Pohlmeyer Reduction

    Full text link
    We study the extended supersymmetric integrable hierarchy underlying the Pohlmeyer reduction of superstring sigma models on semi-symmetric superspaces F/G. This integrable hierarchy is constructed by coupling two copies of the homogeneous integrable hierarchy associated to the loop Lie superalgebra extension f of the Lie superalgebra f of F and this is done by means of the algebraic dressing technique and a Riemann-Hilbert factorization problem. By using the Drinfeld-Sokolov procedure we construct explicitly, a set of 2D spin \pm1/2 conserved supercharges generating supersymmetry flows in the phase space of the reduced model. We introduce the bi-Hamiltonian structure of the extended homogeneous hierarchy and show that the two brackets are of the Kostant-Kirillov type on the co-adjoint orbits defined by the light-cone Lax operators L_\pm. By using the second symplectic structure, we show that these supersymmetries are Hamiltonian flows, we compute part of the supercharge algebra and find the supersymmetric field variations they induce. We also show that this second Poisson structure coincides with the canonical Lorentz-Invariant symplectic structure of the WZNW model involved in the Lagrangian formulation of the extended integrable hierarchy, namely, the semi-symmetric space sine-Gordon model (SSSSG), which is the Pohlmeyer reduced action functional for the transverse degrees of freedom of superstring sigma models on the cosets F/G. We work out in some detail the Pohlmeyer reduction of the AdS_2xS^2 and the AdS_3xS^3 superstrings and show that the new conserved supercharges can be related to the supercharges extracted from 2D superspace. In particular, for the AdS_2xS^2 example, they are formally the same.Comment: V2: Two references added, V3: Modifications in section 2.6, V4: Published versio

    A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data

    Get PDF
    Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.Peer ReviewedPostprint (published version

    Distinctive features of the microbiota associated with different forms of apical periodontitis

    Get PDF
    Microorganisms infecting the dental root canal system play an unequivocal role as causative agents of apical periodontitis. Although fungi, archaea, and viruses have been found in association with some forms of apical periodontitis, bacteria are the main microbial etiologic agents of this disease. Bacteria colonizing the root canal are usually organized in communities similar to biofilm structures. Culture and molecular biology technologies have demonstrated that the endodontic bacterial communities vary in species richness and abundance depending on the different types of infection and different forms of apical periodontitis. This review paper highlights the distinctive features of the endodontic microbiota associated with diverse clinical conditions
    corecore