19,796 research outputs found

    Magnetocaloric effect in manganites: metamagnetic transitions for magnetic refrigeration

    Get PDF
    We present a study of the magnetocaloric effect in La5/8-yPryCa3/8MnO3 (y=0.3) and Pr0.5Ca0.09Sr0.41MnO3 manganites. The low temperature state of both ystems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The samples display magnetocaloric effect evidenced in an adiabatic temperature change during a metamagnetic transition from an antiferromagnetic to a ferromagnetic phase . As additional features, La5/8-yPryCa3/8MnO3 exhibits phase separation characterized by the coexistence of antiferromagnetic and ferromagnetic phases and Pr0.5Ca0.09Sr0.41MnO3 displays inverse magnetocaloric effect in which temperature decreases while applying an external magnetic field. In both cases, a significant part of the magnetocaloric effect appears from non-reversible processes. As the traditional thermodynamic description of the effect usually deals with reversible transitions, we developed an alternative way to calculate the adiabatic temperature change in terms of the change of the relative ferromagnetic fraction induced by magnetic field. To evaluate our model, we performed direct measurement of the sample's adiabatic temperature change by means of a differential thermal analysis. An excellent agreement has been obtained between experimental and calculated data. These results show that metamagnetic transition in manganites play an important role in the study of magnetic refrigeration.Comment: Acepted to be published in Applied Physics Letter

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling

    Get PDF
    Solid-state cooling based on caloric effects is considered a viable alternative to replace the conventional vapor-compression refrigeration systems. Regarding barocaloric materials, recent results show that elastomers are promising candidates for cooling applications around room-temperature. In the present paper, we report supergiant barocaloric effects observed in acetoxy silicone rubber - a very popular, low-cost and environmentally friendly elastomer. Huge values of adiabatic temperature change and reversible isothermal entropy change were obtained upon moderate applied pressures and relatively low strains. These huge barocaloric changes are associated both to the polymer chains rearrangements induced by confined compression and to the first-order structural transition. The results are comparable to the best barocaloric materials reported so far, opening encouraging prospects for the application of elastomers in near future solid-state cooling devices.Comment: 19 pages, 7 figures, 2 table

    The reinfection threshold

    Get PDF
    Thresholds in transmission are responsible for critical changes in infectious disease epidemiology. The epidemic threshold indicates whether infection invades a totally susceptible population. The reinfection threshold indicates whether self-sustained transmission occurs in a population that has developed a degree of partial immunity to the pathogen (by previous infection or vaccination). In models that combine susceptible and partially immune individuals, the reinfection threshold is technically not a bifurcation of equilibria as correctly pointed out by Breban and Blower. However, we show that a branch of equilibria to a reinfection submodel bifurcates from the disease-free equilibrium as transmission crosses this threshold. Consequently, the full model indicates that levels of infection increase by two orders of magnitude and the effect of mass vaccination becomes negligible as transmission increases across the reinfection threshold. (c) 2005 Elsevier Ltd. All rights reserve

    Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives

    Get PDF
    The SIR (susceptible-infectious-resistant) and SIS (susceptible-infectious-susceptible) frameworks for infectious disease have been extensively studied and successfully applied. They implicitly assume the upper and lower limits of the range of possibilities for host immune response. However, the majority of infections do not fall into either of these extreme categories. We combine two general avenues that straddle this range: temporary immune protection (immunity wanes over time since infection), and partial immune protection (immunity is not fully protective but reduces the risk of reinfection). We present a systematic analysis of the dynamics and equilibrium properties of these models in comparison to SIR and SIS, and analyse the outcome of vaccination programmes. We describe how the waning of immunity shortens inter-epidemic periods, and poses major difficulties to disease eradication. We identify a "reinfection threshold" in transmission when partial immunity is included. Below the reinfection threshold primary infection dominates, levels of infection are low, and vaccination is highly effective (approximately an SIR model). Above the reinfection threshold reinfection dominates, levels of infection are high, and vaccination fails to protect (approximately an SIS situation). This association between high prevalence of infection and vaccine failure emphasizes the problems of controlling recurrent infections in high-burden regions. However, vaccines that induce a better protection than natural infection have the potential to increase the reinfection threshold, and therefore constitute interventions with a surprisingly high capacity to reduce infection where reduction is most neede

    Integrable Field Theories with Defects

    Get PDF
    The structure of integrable field theories in the presence of defects is discussed in terms of boundary functions under the Lagrangian formalism. Explicit examples of bosonic and fermionic theories are considered. In particular, the boundary functions for the super sinh-Gordon model is constructed and shown to generate the Backlund transformations for its soliton solutions.Comment: talk presented at the XVth International Colloquium on Integrable Systems and Quantum Symmetries, to appear in Czechoslovak Journal of Physics (2006
    corecore