198 research outputs found

    Sex-partitioning of the <i>Plasmodium falciparum</i> stage V gametocyte proteome provides insight into <i>falciparum</i>-specific cell biology

    Get PDF
    One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates

    The ameliorative effects of choline on ethanol-induced cell death in the neural tube of susceptible BXD strains of mice

    Get PDF
    IntroductionFetal alcohol spectrum disorders (FASD) are the leading preventable cause of intellectual disability, providing the impetus for evaluating various potential treatments to ameliorate ethanol’s teratogenic effects, particularly in the nervous system. One treatment is the dietary supplement choline which has been shown to mitigate at least some of ethanol’s teratogenic effects. The present study was designed to investigate the effects of genetics on choline’s efficacy in ameliorating cell death in the developing neural tube. Previously, we examined BXD recombinant inbred mice, and their parental C57BL/6 J (B6) and DBA/2 J strains, and identified strains that were sensitive to ethanol’s teratogenic actions. Thus, we used these strains to identify response to choline treatment.Materials and methodsTimed pregnant mice from 4 strains (B6, BXD51, BXD73, BXD2) were given either ethanol or isocaloric maltose-dextrin (5.8 g/kg in two administrations separated by 2 h) with choline at one of 3 doses: 0, 100 or 250 mg/kg. Subjects were exposed via intragastric gavage on embryonic day 9 and embryos were collected 7 h after the initial ethanol administrations. Cell death was analyzed using TUNEL staining in the developing forebrain and brainstem.ResultsCholine ameliorated the ethanol-induced cell death across all 4 strains without causing enhanced cell death in control mice. Choline was effective in both the developing telencephalon and in the brainstem. Both doses diminished cell death, with some differences across strains and brain regions, although the 100 mg/kg dose was most consistent in mitigating ethanol-related cell death. Comparisons across strains showed that there was an effect of strain, particularly in the forebrain at the higher dose.DiscussionThese results show that choline is effective in ameliorating ethanol-induced cell death at this early stage of nervous system development. However, there were some strain differences in its efficacy, especially at the high dose, providing further evidence of the importance of genetics in influencing the ability of choline to protect against prenatal alcohol exposure

    Genetics of the Hippocampal Transcriptome in Mouse: A Systematic Survey and Online Neurogenomics Resource

    Get PDF
    Differences in gene expression in the CNS influence behavior and disease susceptibility. To systematically explore the role of normal variation in expression on hippocampal structure and function, we generated an online microarray database for a diverse panel of strains of mice, including most common inbred strains and numerous recombinant inbred lines (www.genenetwork.org). Using this resource, coexpression networks for families of genes can be generated rapidly to test causal models related to function. The data set is optimized for quantitative trait locus (QTL) mapping and was used to identify over 5500 QTLs that modulate mRNA levels. We describe a wide variety of analyses and novel synthetic approaches that take advantage of this resource, and demonstrate how both the data and associated tools can be applied to the study of gene regulation in the hippocampus and relations to structure and function

    Cross-amplification of EST-derived markers among 16 grass species

    Get PDF
    The availability of a large number of expressed sequence tags (ESTs) has facilitated the development of molecular markers in members of the grass family. As these markers are derived from coding sequences, cross-species amplification and transferability is higher than for markers designed from genomic DNA sequences. In this study, 919 EST-based primers developed from seven grass species were assessed for their amplification across a diverse panel of 16 grass species including cereal, turf and forage crops. Out of the 919 primers tested, 89 successfully amplified DNA from one or more species and 340 primers generated PCR amplicons from at least half of the species in the panel. Only 5.2% of the primers tested produced clear amplicons in all 16 species. The majority of the primers (66.9%) were developed from tall fescue and rice and these two species showed amplification rate of 41.6% and 19.0% across the panel, respectively. The highest amplification rate was found for conserved-intron scanning primers (CISP) developed from pearl millet (91%) and sorghum (75%) EST sequences that aligned to rice sequences. The primers with successful amplification identified in this study showed promise in other grass species as demonstrated in differentiating a set of 13 clones of reed canary grass, a species for which very little genomic research has been done. Sequences from the amplified PCR fragments indicated the potential for the transferable CISP markers for comparative mapping purposes. These primer sets can be immediately used for within and across species mapping and will be especially useful for minor grass species with few or no available molecular markers

    Phenotypic screens identify genetic factors associated with gametocyte development in the human malaria parasite Plasmodium falciparum

    Get PDF
    Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen

    Requirement of Mouse BCCIP for Neural Development and Progenitor Proliferation

    Get PDF
    Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors

    Region-Specific Expression of Mitochondrial Complex I Genes during Murine Brain Development

    Get PDF
    Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase) may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome) to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks). With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations – known to be associated with higher cognitive functions of the mammalian brain – strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders

    VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse

    Get PDF
    The signalling lipid PI(3,5)P2 is generated on endosomes and regulates retrograde traffic to the trans-Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P2 levels. Mutations that lower PI(3,5)P2 cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P2 was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P2 regulatory complex by direct contact with the known regulators of PI(3,5)P2: Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P2 regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P2. Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse

    The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1

    Get PDF
    Defective responses to DNA single strand breaks underlie various neurodegenerative diseases. However, the exact role of this repair pathway during the development and maintenance of the nervous system is unclear. Using murine neural-specific inactivation of Xrcc1, a factor that is critical for the repair of DNA single strand breaks, we found a profound neuropathology that is characterized by the loss of cerebellar interneurons. This cell loss was linked to p53-dependent cell cycle arrest and occurred as interneuron progenitors commenced differentiation. Loss of Xrcc1 also led to the persistence of DNA strand breaks throughout the nervous system and abnormal hippocampal function. Collectively, these data detail the in vivo link between DNA single strand break repair and neurogenesis and highlight the diverse consequences of specific types of genotoxic stress in the nervous system
    corecore