72 research outputs found

    Decaying DC offset current mitigation in phasor estimation applications: A Review

    Get PDF
    Decaying DC (DDC) offset current mitigation is a vital challenge in phasor current estimation since it causes malfunctioning/maloperation of measurements and protection systems. Due to the inductive nature of electric power systems, the current during fault inception cannot change immediately and it contains a transient oscillation. The oscillatory component acts similar to an exponential DC signal and its characteristics depend on the X/R ratio of the system, fault location, and fault impedance. DDC attenuates accurate phasor estimation, which is pivotal in protection systems. Therefore, the DDC must be eliminated from the fault current (FC) signal. This paper presents an overview of DDC mitigation methods by considering different groups—before the discrete Fourier transform (pre-DFT), after the discrete Fourier transform (post-DFT), the least square-based (LS-based), and other methods. Through a comprehensive review of the existing schemes, the effects of noise, harmonics, multiple DDCs (MDDCs), and off-nominal frequency (ONF) on the accuracy of DDC estimation, were recognized. A detailed discussion (along with some simulation results) are presented to address the main advantages/disadvantages of the past studies. Finally, this paper presents a few suggestions for future researchers, for researchers to investigate more implementable solutions in this field

    Topological Surface States Protected From Backscattering by Chiral Spin Texture

    Get PDF
    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Recently, experiments and theoretical efforts have provided strong evidence for both two- and three-dimensional topological insulators and their novel edge and surface states in semiconductor quantum well structures and several Bi-based compounds. A key characteristic of these spin-textured boundary states is their insensitivity to spin-independent scattering, which protects them from backscattering and localization. These chiral states are potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing. Here we use a scanning tunneling microscope (STM) to visualize the gapless surface states of the three-dimensional topological insulator BiSb and to examine their scattering behavior from disorder caused by random alloying in this compound. Combining STM and angle-resolved photoemission spectroscopy, we show that despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observation of spin-selective scattering demonstrates that the chiral nature of these states protects the spin of the carriers; they therefore have the potential to be used for coherent spin transport in spintronic devices.Comment: to be appear in Nature on August 9, 200

    Validation of the Ottawa Ankle Rules in Iran: A prospective survey

    Get PDF
    BACKGROUND: Acute ankle injuries are one of the most common reasons for presenting to emergency departments, but only a small percentage of patients – approximately 15% – have clinically significant fractures. However, these patients are almost always referred for radiography. The Ottawa Ankle Rules (OARs) have been designed to reduce the number of unnecessary radiographs ordered for these patients. The objective of this study was to validate the OARs in the Iranian population. METHODS: This prospective survey was done among 200 patients with acute ankle injury from January 2004 to April 2004 in the Akhtar Orthopedics Hospital Emergency Department. Main outcome measures of this survey were: sensitivity, specificity, positive predictive value, negative predictive value, and likelihood ratios (positive and negative) of the OARs. RESULTS: Sensitivity of the OARs for detecting 37 ankle fractures (23 in the malleolar zone and 14 in the midfoot zone) was 100% for each of the two zones, and 100% for both zones. Specificity of the OARs for detecting fractures was 40.50% for both zones, 40.50% for the malleolar zone, and 56.00% for the midfoot zone. Implementation of the OARs had the potential for reducing radiographs by 33%. CONCLUSION: OARs are very accurate and highly sensitive tools for detecting ankle fractures. Implementation of these rules would lead to significant reduction in the number of radiographs, costs, radiation exposure and waiting times in emergency departments

    Red blood cell-derived semaphorin 7A promotes thrombo-inflammation in myocardial ischemia-reperfusion injury through platelet GPIb.

    Get PDF
    Myocardial ischemia is one of the leading health problems worldwide. Therapy consists of the restitution of coronary perfusion which is followed by myocardial inflammation. Platelet-neutrophil interaction is a crucial process during inflammation, yet its consequences are not fully understood. Here, we show that platelet-neutrophil complexes (PNCs) are increased in patients with acute myocardial infarction and that this is associated with increased levels of neuronal guidance protein semaphorin 7A (SEMA7A). To investigate this further, we injected WT animals with Sema7a and found increased infarct size with increased numbers of PNCs. Experiments in genetically modified animals identify Sema7a on red blood cells to be crucial for this condition. Further studies revealed that Sema7a interacts with the platelet receptor glycoprotein Ib (GPIb). Treatment with anti-Sema7a antibody protected from myocardial tissue injury. In summary, we show that Sema7a binds to platelet GPIb and enhances platelet thrombo-inflammatory activity, aggravating post-ischemic myocardial tissue injury

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases

    Energy management systems for grid-connected houses with solar PV and battery by considering flat and time-of-use electricity rates

    Get PDF
    This paper develops new practical rule-based energy management systems (EMSs) for typical grid-connected houses with solar photovoltaic (PV) and battery by considering different rates for purchasing and selling electricity. The EMSs are developed to supply the household’s loads and reduce operating costs of the system based on different options of flat and time-of-use (ToU) rates for buying and selling electricity prices. Four different options are evaluated and compared in this study: (1) Flat-Flat, (2) ToU-Flat, (3) Flat-ToU, and (4) ToU-ToU. The operation cost is calculated based on the electricity exchange with the main grid, the equivalent cost of PV generation, as well as the degradation cost of battery storage. The operation of the grid-connected house with rooftop solar PV and battery is evaluated for a sunny week in summer and a cloudy week in winter to investigate the proper performance for high and low generations of PV. While the developed rule-based EMS are generic and can be applied for any case studies, a grid-connected house in Australia is examined. For this purpose, real data of solar radiation, air temperature, electricity consumption, and electricity rates are used. It is found that the ToU-Flat option has the lowest operating cost for the customers

    Optimal sizing of rooftop PV and battery storage for grid-connected houses considering flat and time-of-use electricity rates

    Get PDF
    This paper investigates a comparative study for practical optimal sizing of rooftop solar photovoltaic (PV) and battery energy storage systems (BESSs) for grid-connected houses (GCHs) by considering flat and time-of-use (TOU) electricity rate options. Two system configurations, PV only and PV-BESS, were optimally sized by minimizing the net present cost of electricity for four options of electricity rates. A practical model was developed by considering grid constraints, daily supply of charge of electricity, salvation value and degradation of PV and BESS, actual annual data of load and solar, and current market price of components. A rule-based energy management system was examined for GCHs to control the power flow among PV, BESS, load, and grid. Various sensitivity analyses are presented to examine the impacts of grid constraint and electricity rates on the cost of electricity and the sizes of the components. Although the capacity optimization model is generally developed for any case study, a grid-connected house in Australia is considered as the case system in this paper. It is found that the TOU-Flat option for the PV-BESS configuration achieved the lowest NPC compared to other configuration and options. The optimal capacities of rooftop PV and BESS were obtained as 9 kW and 6 kWh, respectively, for the PV-BESS configuration with TOU-Flat according to two performance metrices: net present cost and cost of electricity

    Losses in efficiency maps of electric vehicles: An overview

    Get PDF
    In some applications such as electric vehicles, electric motors should operate in a wide torque and speed ranges. An efficiency map is the contour plot of the maximum efficiency of an electric machine in torque-speed plane. It is used to provide an overview on the performance of an electric machine when operates in different operating points. The electric machine losses in different torque and speed operating points play a prominent role in the efficiency of the machines. In this paper, an overview about the change of various loss components in torque-speed envelope of the electric machines is rendered to show the role and significance of each loss component in a wide range of torque and speeds. The research gaps and future research subjects based on the conducted review are reported. The role and possibility of the utilization of the computational intelligence-based modeling of the losses in improvement of the loss estimation is discussed

    Decaying DC Offset Current Mitigation in Phasor Estimation Applications: A Review

    No full text
    Decaying DC (DDC) offset current mitigation is a vital challenge in phasor current estimation since it causes malfunctioning/maloperation of measurements and protection systems. Due to the inductive nature of electric power systems, the current during fault inception cannot change immediately and it contains a transient oscillation. The oscillatory component acts similar to an exponential DC signal and its characteristics depend on the X/R ratio of the system, fault location, and fault impedance. DDC attenuates accurate phasor estimation, which is pivotal in protection systems. Therefore, the DDC must be eliminated from the fault current (FC) signal. This paper presents an overview of DDC mitigation methods by considering different groups—before the discrete Fourier transform (pre-DFT), after the discrete Fourier transform (post-DFT), the least square-based (LS-based), and other methods. Through a comprehensive review of the existing schemes, the effects of noise, harmonics, multiple DDCs (MDDCs), and off-nominal frequency (ONF) on the accuracy of DDC estimation, were recognized. A detailed discussion (along with some simulation results) are presented to address the main advantages/disadvantages of the past studies. Finally, this paper presents a few suggestions for future researchers, for researchers to investigate more implementable solutions in this field
    • …
    corecore