1,003 research outputs found
Investigating thermal cooling mechanisms of human body under exposure to electromagnetic radiation
Thermal cooling mechanisms of human exposed to electromagnetic (EM) radiation are studied in detail. The EM and thermal co-simulation method is utilized to calculate the and temperature distributions. Moreover, Pennes’ bioheat equation is solved to understand different thermal cooling mechanisms, including blood flow, convective cooling, and radiative cooling separately or jointly. The numerical results demonstrate the characteristics and functions for each cooling mechanism. Different from the traditional view that the cooling effect of blood is usually reflected by its influence on sweat secretion and evaporation, this paper indicates that the blood flow itself is an important factor of thermal cooling, especially for high-intensity EM radiation. This paper contributes to the fundamental understanding of thermal cooling mechanisms of human
Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer
BACKGROUND: Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS: We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS: We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al
Viroids: survivors from the RNA world?
[EN] Because RNA can be a carrier of genetic information and a biocatalyst, there
is a consensus that it emerged before DNA and proteins, which eventually
assumed these roles and relegated RNA to intermediate functions. If such a
scenario¿the so-calledRNAworld¿existed,wemight hope to find its relics
in our presentworld. The properties of viroids that make them candidates for
being survivors of the RNA world include those expected for primitive RNA
replicons: (a) small size imposed by error-prone replication, (b) high G +
C content to increase replication fidelity, (c) circular structure for assuring
complete replication without genomic tags, (d ) structural periodicity for
modular assembly into enlarged genomes, (e) lack of protein-coding ability
consistent with a ribosome-free habitat, and ( f ) replication mediated in some
by ribozymes, the fingerprint of the RNA world. With the advent of DNA
and proteins, those protoviroids lost some abilities and became the plant
parasites we now know.R.F. has received funding by grant BFU2011-28443 from Ministerio de Economia y Competititvidad (MINECO, Spain), R.S. by grants BFU2011-25271 (MINECO) and ERC-2011-StG-281191-VIRMUT (European Research Council), and S.F.E. by grant BFU2012-30805 (MINECO). P.S. has been supported by postdoctoral contracts from Generalitat Valenciana (APOSTD/2010, program VALi+d) and MINECO (program Juan de la Cierva).Flores Pedauye, R.; Gago Zachert, SP.; Serra Alfonso, P.; Sanjuan Verdeguer, R.; Elena Fito, SF. (2014). Viroids: survivors from the RNA world?. Annual Review of Microbiology. 68:395-414. https://doi.org/10.1146/annurev-micro-091313-103416S3954146
Proton-Binding Sites of Acid-Sensing Ion Channel 1
Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
Effect of biased noise fluctuations on the output radiation of coherent beat laser
Effect of biased noise fluctuations on the degree of squeezing as well as the
intensity of a radiation generated by a one-photon coherent beat laser is
presented. It turns out that the radiation exhibits squeezing inside and
outside the cavity under certain conditions. The degree of squeezing is
enhanced by the biased noise input significantly in both regions. Despite the
presence of the biased environment modes outside the cavity, the degree of
squeezing outside the cavity can be greater than or equal to or even less than
the cavity radiation depending on the initial preparation of the atomic
superposition and amplitude of the external driving radiation. But the
intensity of the radiation is found to be lesser outside the cavity regardless
of these parameters.Comment: 18 pages, 7 figure
Development and Functional Analysis of Novel Genetic Promoters Using DNA Shuffling, Hybridization and a Combination Thereof
BACKGROUND: Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications. METHODOLOGY: Using the Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter (FS) sequences, we generated two single shuffled promoter libraries (LssF and LssFS), two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS), two hybrid promoters (FuasFScp and FSuasFcp) and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp). Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv. Xanthi) protoplasts. It was observed that most of the shuffled promoters showed reduced activity compared to the two parent promoters (F and FS) and the CaMV35S promoter. In silico studies (computer simulated analyses) revealed that the reduced promoter activities of the shuffled promoters could be due to their higher helical stability. On the contrary, the hybrid promoters FuasFScp and FSuasFcp showed enhanced activities compared to F, FS and CaMV 35S in both transient and transgenic Nicotiana tabacum and Arabidopsis plants. Northern-blot and qRT-PCR data revealed a positive correlation between transcription and enzymatic activity in transgenic tobacco plants expressing hybrid promoters. Histochemical/X-gluc staining of whole transgenic seedlings/tissue-sections and fluorescence images of ImaGene Green™ treated roots and stems expressing the GUS reporter gene under the control of the FuasFScp and FSuasFcp promoters also support the above findings. Furthermore, protein extracts made from protoplasts expressing the human defensin (HNP-1) gene driven by hybrid promoters showed enhanced antibacterial activity compared to the CaMV35S promoter. SIGNIFICANCE/CONCLUSION: Both shuffled and hybrid promoters developed in the present study can be used as molecular tools to study the regulation of ectopic gene expression in plants
Epitope-positive truncating MLH1 mutation and loss of PMS2: implications for IHC-directed genetic testing for lynch syndrome
We assessed mismatch repair by immunohistochemistry (IHC) and microsatellite instability (MSI) analysis in an early onset endometrial cancer and a sister’s colon cancer. We demonstrated high-level MSI and normal expression for MLH1, MSH2 and MSH6. PMS2 failed to stain in both tumors, strongly implicating a PMS2 defect. This family did not meet clinical criteria for Lynch syndrome. However, early onset endometrial cancers in the proband and her sister, a metachronous colorectal cancer in the sister as well as MSI in endometrial and colonic tumors suggested a heritable mismatch repair defect. PCR-based direct exonic sequencing and multiplex ligation-dependent probe amplification (MLPA) were undertaken to search for PMS2 mutations in the germline DNA from the proband and her sister. No mutation was identified in the PMS2 gene. However, PMS2 exons 3, 4, 13, 14, 15 were not evaluated by MLPA and as such, rearrangements involving those exons cannot be excluded. Clinical testing for MLH1 and MSH2 mutation revealed a germline deletion of MLH1 exons 14 and 15. This MLH1 germline deletion leads to an immunodetectable stable C-terminal truncated MLH1 protein which based on the IHC staining must abrogate PMS2 stabilization. To the best of our knowledge, loss of PMS2 in MLH1 truncating mutation carriers that express MLH1 in their tumors has not been previously reported. This family points to a potential limitation of IHC-directed gene testing for suspected Lynch syndrome and the need to consider comprehensive MLH1 testing for individuals whose tumors lack PMS2 but for whom PMS2 mutations are not identified
A Novel Triterpenoid Isolated from the Root Bark of Ailanthus excelsa Roxb (Tree of Heaven), AECHL-1 as a Potential Anti-Cancer Agent
We report here the isolation and characterization of a new compound Ailanthus excelsa chloroform extract-1 (AECHL-1) (C(29)H(36)O(10); molecular weight 543.8) from the root bark of Ailanthus excelsa Roxb. The compound possesses anti-cancer activity against a variety of cancer cell lines of different origin.AECHL-1 treatment for 12 to 48 hr inhibited cell proliferation and induced death in B16F10, MDA-MB-231, MCF-7, and PC3 cells with minimum growth inhibition in normal HEK 293. The antitumor effect of AECHL-1 was comparable with that of the conventional antitumor drugs paclitaxel and cisplatin. AECHL-1-induced growth inhibition was associated with S/G(2)-M arrests in MDA-MB-231, MCF-7, and PC3 cells and a G(1) arrest in B16F10 cells. We observed microtubule disruption in MCF-7 cells treated with AECHL-1 in vitro. Compared with control, subcutaneous injection of AECHL-1 to the sites of tumor of mouse melanoma B16F10 implanted in C57BL/6 mice and human breast cancer MCF-7 cells in athymic nude mice resulted in significant decrease in tumor volume. In B16F10 tumors, AECHL-1 at 50 microg/mouse/day dose for 15 days resulted in increased expression of tumor suppressor proteins P53/p21, reduction in the expression of the oncogene c-Myc, and downregulation of cyclin D1 and cdk4. Additionally, AECHL-1 treatment resulted in the phosphorylation of p53 at serine 15 in B16F10 tumors, which seems to exhibit p53-dependent growth inhibitory responses.The present data demonstrate the activity of a triterpenoid AECHL-1 which possess a broad spectrum of activity against cancer cells. We propose here that AECHL-1 is a futuristic anti-cancer drug whose therapeutic potential needs to be widely explored for chemotherapy against cancer
- …