196 research outputs found

    Traffic-Related Air Pollution and QT Interval: Modification by Diabetes, Obesity, and Oxidative Stress Gene Polymorphisms in the Normative Aging Study

    Get PDF
    BACKGROUND. Acute exposure to ambient air pollution has been associated with acute changes in cardiac outcomes, often within hours of exposure. OBJECTIVES. We examined the effects of air pollutants on heart-rate-corrected QT interval (QTc), an electrocardiographic marker of ventricular repolarization, and whether these associations were modified by participant characteristics and genetic polymorphisms related to oxidative stress. METHODS. We studied repeated measurements of QTc on 580 men from the Veterans Affairs Normative Aging Study (NAS) using mixed-effects models with random intercepts. We fitted a quadratic constrained distributed lag model to estimate the cumulative effect on QTc of ambient air pollutants including fine particulate matter ≀ 2.5 ΞΌm in aerodynamic diameter (PM2.5), ozone (O3), black carbon (BC), nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) concentrations during the 10 hr before the visit. We genotyped polymorphisms related to oxidative stress and analyzed pollution-susceptibility score interactions using the genetic susceptibility score (GSS) method. RESULTS. Ambient traffic pollutant concentrations were related to longer QTc. An interquartile range (IQR) change in BC cumulative during the 10 hr before the visit was associated with increased QTc [1.89 msec change; 95% confidence interval (CI), -0.16 to 3.93]. We found a similar association with QTc for an IQR change in 1-hr BC that occurred 4 hr before the visit (2.54 msec change; 95% CI, 0.28-4.80). We found increased QTc for IQR changes in NO2 and CO, but the change was statistically insignificant. In contrast, we found no association between QTc and PM2.5, SO2, and O3. The association between QTc and BC was stronger among participants who were obese, who had diabetes, who were nonsmokers, or who had higher GSSs. CONCLUSIONS. Traffic-related pollutants may increase QTc among persons with diabetes, persons who are obese, and nonsmoking elderly individuals; the number of genetic variants related to oxidative stress increases this effect.National Institute of Environmental Health Sciences (ES014663-01A2, P01 ES09825); United States Environmental Protection Agency (R827353, R83241601

    Species Used for Drug Testing Reveal Different Inhibition Susceptibility for 17beta-Hydroxysteroid Dehydrogenase Type 1

    Get PDF
    Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17Ξ²-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17Ξ²-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17Ξ²-HSD types 1, 2, 4, 5 and 7 but also against 17Ξ²-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17Ξ²-HSDs analyzed were observed. Especially, the rodent 17Ξ²-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17Ξ²-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution

    Spatio-Temporal Dependence of the Signaling Response in Immune-Receptor Trafficking Networks Regulated by Cell Density: A Theoretical Model

    Get PDF
    Cell signaling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signaling pathways. In most experimental systems, ligand concentration and cell density vary within a wide range of values. Dependence of the signal response on cell density is related with the extracellular volume available per cell. This dependence has previously been studied using non-spatial models which assume that signaling components are well mixed and uniformly distributed in a single compartment. In this paper, a mathematical model that shows the influence exerted by cell density on the spatio-temporal evolution of ligands, cell surface receptors, and intracellular signaling molecules is developed. To this end, partial differential equations were used to model ligand and receptor trafficking dynamics through the different domains of the whole system. This enabled us to analyze several interesting features involved with these systems, namely: a) how the perturbation caused by the signaling response propagates through the system; b) receptor internalization dynamics and how cell density affects the robustness of dose-response curves upon variation of the binding affinity; and c) that enhanced correlations between ligand input and system response are obtained under conditions that result in larger perturbations of the equilibrium . Finally, the results are compared with those obtained by considering that the above components are well mixed in a single compartment

    Italian network for obesity and cardiovascular disease surveillance: A pilot project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Also in Mediterranean countries, which are considered a low risk population for cardiovascular disease (CVD), the increase in body mass index (BMI) has become a public health priority. To evaluate the feasibility of a CVD and obesity surveillance network, forty General Practitioners (GPs) were engaged to perform a screening to assess obesity, cardiovascular risk, lifestyle habits and medication use.</p> <p>Methods</p> <p>A total of 1,046 women and 1,044 men aged 35–74 years were randomly selected from GPs' lists stratifying by age decade and gender. Anthropometric and blood pressure measurements were performed by GPs using standardized methodologies. BMI was computed and categorized in normal weight (BMI 18.5–24.9 kg/m<sup>2</sup>), overweight (BMI 25.0–29.9 kg/m<sup>2</sup>) and obese (BMI β‰₯ 30 kg/m<sup>2</sup>). Food frequency (per day: fruits and vegetables; per week: meat, cheese, fish, pulses, chocolate, fried food, sweet, wholemeal food, rotisserie food and sugar drink) and physical activity (at work and during leisure time) were investigated through a questionnaire. CVD risk was assessed using the Italian CUORE Project risk function.</p> <p>Results</p> <p>The percentage of missing values was very low. Prevalence of overweight was 34% in women and 50% in men; prevalence of obesity was 23% in both men and women. Level of physical activity was mostly low or very low. BMI was inversely associated with consumption of pulses, rotisserie food, chocolate, sweets and physical activity during leisure time and directly associated with consumption of meat. Mean value of total cardiovascular risk was 4% in women and 11% in men. One percent of women and 16% of men were at high cardiovascular risk (β‰₯ 20% in 10 years). Normal weight persons were four times more likely to be at low risk than obese persons.</p> <p>Conclusion</p> <p>This study demonstrated the feasibility of a surveillance network of GPs in Italy focusing on obesity and other CVD risk factors. It also provided information on lifestyle habits, such as diet and physical activity.</p

    Is the process of delivery of an individually tailored lifestyle intervention associated with improvements in LDL cholesterol and multiple lifestyle behaviours in people with Familial Hypercholesterolemia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More insight in the association between reach, dose and fidelity of intervention components and effects is needed. In the current study, we aimed to evaluate reach, dose and fidelity of an individually tailored lifestyle intervention in people with Familial Hypercholesterolemia (FH) and the association between intervention dose and changes in LDL-Cholesterol (LDL-C), and multiple lifestyle behaviours at 12-months follow-up.</p> <p>Methods</p> <p>Participants (n = 181) randomly allocated to the intervention group received the PRO-FIT intervention consisting of computer-tailored lifestyle advice (<it>PRO-FIT*advice</it>) and counselling (face-to-face and telephone booster calls) using Motivational Interviewing (MI). According to a process evaluation plan, intervention reach, dose delivered and received, and MI fidelity were assessed using the recruitment database, website/counselling logs and the Motivational Interviewing Treatment Integrity (MITI 3.1.1.) code. Regression analyses were conducted to explore differences between participant and non-participant characteristics, and the association between intervention dose and change in LDL-C, and multiple lifestyle behaviours.</p> <p>Results</p> <p>A 34% (n = 181) representative proportion of the intended intervention group was reached during the recruitment phase; participants did not differ from non-participants (n = 623) on age, gender and LDL-C levels. Of the participants, 95% received a <it>PRO-FIT*advice</it> log on account, of which 49% actually logged on and completed at least one advice module. Nearly all participants received a face-to-face counselling session and on average, 4.2 telephone booster calls were delivered. None of the face-to-face sessions were implemented according to MI guidelines. Overall, weak non-significant positive associations were found between intervention dose and LDL-C and lifestyle behaviours.</p> <p>Conclusions</p> <p>Implementation of the PRO-FIT intervention in practice appears feasible, particularly <it>PRO-FIT*advice</it>, since it can be relative easily implemented with a high dose delivered. However, only less than half of the intervention group received the complete intervention-package as intended. Strategies to let participants optimally engage in using web-based computer-tailored interventions like <it>PRO-FIT*advice</it> are needed. Further, more emphasis should be put on more extensive MI training and monitoring/supervision.</p> <p>Trial registration</p> <p>NTR1899 at ww.trialregister.nl.</p

    Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFΞΊB survival axis downstream of Death receptor-3

    Get PDF
    International audienceABSTRACT: BACKGROUND: Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. METHODS: Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFΞΊB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. RESULTS: Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFΞΊB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of DR3 that has no trans-membrane domain and no death domain. CONCLUSION: Colon cancer cells acquire an increased capacity to survive via the activation of the PI3K/NFΞΊB pathway following the stimulation of DR3 by E-selectin. Generation of a DR3 splice variant devoid of death domain can further contribute to protect against apoptosis

    Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    Get PDF
    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins

    Critical Role of Constitutive Type I Interferon Response in Bronchial Epithelial Cell to Influenza Infection

    Get PDF
    Innate antiviral responses in bronchial epithelial cells (BECs) provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs). However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-Ξ². However it was found that there was constitutive release of IFN-Ξ² by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-Ξ² release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells
    • …
    corecore