3,384 research outputs found

    Quantum fluctuations in high field magnetization of 2D square lattice J1-J2 antiferromagnets

    Full text link
    The J1-J2 square lattice Heisenberg model with spin S=1/2 has three phases with long-range magnetic order and two unconventionally ordered phases depending on the ratio of exchange constants. It describes a number of recently found layered vanadium oxide compounds. A simple means of investigating the ground state is the study of the magnetization curve and high-field susceptibility. We discuss these quantities by using the spin-wave theory and the exact diagonalization in the whole J1-J2 plane. We compare both results and find good overall agreement in the sectors of the phase diagram with magnetic order. Close to the disordered regions the magnetization curve shows strong deviations from the classical linear behaviour caused by large quantum fluctuations and spin-wave approximation breaks down. On the FM side (J1<0) where one approaches the quantum gapless spin nematic ground state this region is surprisingly large. We find that inclusion of second order spin-wave corrections does not lead to fundamental improvement. Quantum corrections to the tilting angle of the ordered moments are also calculated. They may have both signs, contrary to the always negative first order quantum corrections to the magnetization. Finally we investigate the effect of the interlayer coupling and find that the quasi-2D picture remains valid up to |J_\perp/J1| ~ 0.3.Comment: 13 pages, 6figure

    Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs)

    Get PDF
    Label-free detection of cancer biomarkers using low cost biosensors has promising applications in clinical diagnostics. In this work, ZnO-based thin film bulk acoustic wave resonators (FBARs) with resonant frequency of ∼1.5 GHz and mass sensitivity of 0.015 mg/m2 (1.5 ng/cm2) have been fabricated for their deployment as biosensors. Mouse monoclonal antibody, anti-human prostate-specific antigen (Anti-hPSA) has been used to bind human prostate-specific antigen (hPSA), a model cancer used in this study. Ellipsometry was used to characterize and optimise the antibody adsorption and antigen binding on gold surface. It was found that the best amount of antibody at the gold surface for effective antigen binding is around 1 mg/m2, above or below which resulted in the reduced antigen binding due to either the limited binding sites (below 1 mg/m2) or increased steric effect (above 1 mg/m2). The FBAR data were in good agreement with the data obtained from ellipsometry. Antigen binding experiments using FBAR sensors demonstrated that FBARs have the capability to precisely detect antigen binding, thereby making FBARs an attractive low cost alternative to existing cancer diagnostic sensors.This work was supported by the Engineering and Physical Sciences Research Council [grants EP/F062966/1, EP/F063865/1 and EP/F06294X/1], the Royal Society [grant RG120061] and the National Natural Science Foundation of China (NSFC) [grant 61150110485].This is the accepted manuscript version. The final published version of the article is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0925400513011052

    General Gauge Mediation with Gauge Messengers

    Get PDF
    We generalize the General Gauge Mediation formalism to allow for the possibility of gauge messengers. Gauge messengers occur when charged matter fields of the susy-breaking sector have non-zero F-terms, which leads to tree-level, susy-breaking mass splittings in the gauge fields. A classic example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge messengers. We give a completely general, model independent, current-algebra based analysis of gauge messenger mediation of susy-breaking to the visible sector. Characteristic aspects of gauge messengers include enhanced contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated already at one loop, and also at two loops, and significant one-loop A-terms, already at the messenger scale.Comment: 79 pages, 5 figure

    Quantitative analysis of human kallikrein gene 14 expression in breast tumours indicates association with poor prognosis

    Get PDF
    KLK14 (formerly known as KLK-L6) is a recently identified member of the human kallikrein gene family. This family harbours several genes aberrantly expressed in various cancers as well as established (PSA/hK3, hK2) and potential (hK6, hK10) cancer markers. Similar to other kallikrein genes, KLK14 was found to be regulated by steroid hormones, particularly androgens and progestins, in breast and ovarian cancer cell lines. Preliminary studies indicated that KLK14 is differentially expressed in breast, ovarian, prostatic and testicular tumours. Given the above, we determined the prognostic significance of KLK14 expression in breast cancer. We studied KLK14 expression in 178 histologically confirmed epithelial breast carcinomas by quantitative reverse transcription–polymerase chain reaction and correlated with clinicopathological variables (tumour stage, grade, histotype etc.) and with outcome (disease-free survival and overall survival), monitored over a median of 76 months. KLK14 mRNA levels ranged from 0 to 1219 arbitrary units in breast cancer tissues, with a mean±s.e. of 136±22. An optimal cutoff value of 40.5 arbitrary units was selected, to categorise tumours as KLK14-positive or negative. Higher concentrations of KLK14 mRNA were more frequently found in patients with advanced stage (III) disease (P=0.032). No statistically significant association was found between KLK14 and the other clinicopathological variables. KLK14 overexpression was found to be a significant predictor of decreased disease-free survival (hazard ratio of 2.31, P=0.001) and overall survival (hazard ratio of 2.21, P=0.005). Cox multivariate analysis indicated that KLK14 was an independent prognostic indicator of disease-free survival and overall survival. KLK14 also has independent prognostic value in subgroups of patients with a tumour size ⩽2 cm and positive nodal, oestrogen receptor and progestin receptor status. We conclude that KLK14 expression, as assessed by quantitative reverse transcription–polymerase chain reaction, is an independent marker of unfavourable prognosis for breast cancer

    Expression of human Kallikrein 14 (KLK14) in breast cancer is associated with higher tumour grades and positive nodal status

    Get PDF
    Human kallikrein 14 (KLK14) is a steroid hormone-regulated member of the tissue kallikrein family of serine proteases, for which a prognostic and diagnostic value in breast cancer has been suggested. To further characterise the value of KLK14 as a breast tumour marker, we have carefully analysed KLK14 expression in normal breast tissue and breast cancer both on the RNA level by real-time RT-PCR (n=39), and on the protein level (n=127) using a KLK14-specific antibody for immunohistochemistry. We correlated KLK14 protein expression data with available clinico-pathological parameters (mean follow-up time was 55 months) including patient prognosis. KLK14 RNA expression as quantified by real-time RT-PCR was significantly more abundant in breast tumours compared to normal breast tissue (P=0.027), an issue that had not been clarified recently. Concordantly with the RNA data, cytoplasmic KLK14 protein expression was significantly higher in invasive breast carcinomas compared to normal breast tissues (P=0.003). Furthermore, KLK14 protein expression was associated with higher tumour grade (P=0.041) and positive nodal status (P=0.045) but was not significantly associated with shortened disease-free or overall patient survival time in univariate analyses. We conclude that KLK14 is clearly overexpressed in breast cancer in comparison to normal breast tissues and is positively associated with conventional parameters of tumour aggressiveness, but due to a missing association with survival times, the use of KLK14 immunohistochemistry as a prognostic marker in breast cancer is questionable

    Solidly Mounted Resonators with Carbon Nanotube Electrodes for Biosensing Applications

    Get PDF
    The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile

    Higher expression of human kallikrein 10 in breast cancer tissue predicts tamoxifen resistance

    Get PDF
    The human tissue kallikreins are secreted serine proteases, encoded by a group of homologous genes clustered in tandem on chromosome 19q13.3-4. Human kallikrein 6 and human kallikrein 10 are two new members of this family. Recently, we developed highly sensitive and specific immunofluorometric assays for human kallikrein 6 and human kallikrein 10, which allow for their quantification in tissue extracts and biological fluids. Both human kallikrein 6 and human kallikrein 10 are found to be down-regulated in breast cancer cell lines, suggesting that they may be involved in breast cancer pathogenesis and progression. In this study, we investigated the potential value of human kallikrein 6 and human kallikrein 10 as prognostic and predictive factors in breast cancer. We quantified human kallikrein 6 and human kallikrein 10 protein levels in 749 breast tumour cytosolic extracts and correlated this data with various clinicopathological variables and patient outcomes. Human kallikrein 6 and human kallikrein 10 are positively correlated with each other. Higher human kallikrein 6 and human kallikrein 10 protein levels are associated with younger age, pre-menopausal, status and tumours which are negative for oestrogen and progesterone receptors. No correlation was found between human kallikrein 6 and human kallikrein 10 levels and tumour size, grade, and nodal status. Survival analysis showed that neither human kallikrein 6 nor human kallikrein 10 are related to the rate of relapse-free and overall survival. In the analysis with respect to response to tamoxifen therapy, although human kallikrein 6 levels were not associated with tamoxifen responsiveness, higher levels of human kallikrein 10 were significantly associated with a poor response rate. This association remained significant in the multivariate analysis. Furthermore, higher human kallikrein 10 levels were significantly related with a short progression-free and post-relapse overall survival after start of tamoxifen treatment for advanced disease. Taken together, our results suggest that although human kallikrein 6 and human kallikrein 10 are not prognostic markers for breast cancer, human kallikrein 10 is an independent predictive marker for response of tamoxifen therapy

    AlN-based BAW resonators with CNT electrodes for gravimetric biosensing

    Get PDF
    Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed
    corecore