47 research outputs found

    TOPS++FATCAT: Fast flexible structural alignment using constraints derived from TOPS+ Strings Model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure analysis and comparison are major challenges in structural bioinformatics. Despite the existence of many tools and algorithms, very few of them have managed to capture the intuitive understanding of protein structures developed in structural biology, especially in the context of rapid database searches. Such intuitions could help speed up similarity searches and make it easier to understand the results of such analyses.</p> <p>Results</p> <p>We developed a TOPS++FATCAT algorithm that uses an intuitive description of the proteins' structures as captured in the popular TOPS diagrams to limit the search space of the aligned fragment pairs (AFPs) in the flexible alignment of protein structures performed by the FATCAT algorithm. The TOPS++FATCAT algorithm is faster than FATCAT by more than an order of magnitude with a minimal cost in classification and alignment accuracy. For beta-rich proteins its accuracy is better than FATCAT, because the TOPS+ strings models contains important information of the parallel and anti-parallel hydrogen-bond patterns between the beta-strand SSEs (Secondary Structural Elements). We show that the TOPS++FATCAT errors, rare as they are, can be clearly linked to oversimplifications of the TOPS diagrams and can be corrected by the development of more precise secondary structure element definitions.</p> <p>Software Availability</p> <p>The benchmark analysis results and the compressed archive of the TOPS++FATCAT program for Linux platform can be downloaded from the following web site: <url>http://fatcat.burnham.org/TOPS/</url></p> <p>Conclusion</p> <p>TOPS++FATCAT provides FATCAT accuracy and insights into protein structural changes at a speed comparable to sequence alignments, opening up a possibility of interactive protein structure similarity searches.</p

    Agenesia e lipoma de corpo caloso: relato de caso

    Get PDF
    The agenesis and lipoma of the corpus callosum is a very rare association. We report the case of a 18-years old woman with rare epileptic seizures since the age of 6 years, normal neurological examination, as well as normal electroencephalogram. The brain computed tomography scanning and the magnetic resonance showed the lipoma and the agenesis of the corpus callosum.A agenesia e lipoma do corpo caloso é uma associação muito rara. Relatamos o caso de uma paciente de 18 anos com raras crises epilépticas desde os 6 anos de idade, exame neurológico normal, assim como eletrencefalograma normal. A tomografia computadorizada de crânio e a ressonância magnética mostraram o lipoma e a agenesia de corpo caloso.Escola Paulista de MedicinaUNIFESP, EPMSciEL

    A Self-Organizing Algorithm for Modeling Protein Loops

    Get PDF
    Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies

    Rapid Sampling of Molecular Motions with Prior Information Constraints

    Get PDF
    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion

    MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis

    No full text
    Despite the ubiquity of G(M2) gangliosides accumulation in patients with late-onset G(M2) gangliosidosis (G(M2)G), the only clinical MR imaging-apparent brain abnormality is profound cerebellar atrophy. The goal of this study was to detect the presence and assess the extent of neuroaxonal injury in the normal-appearing gray and white matter (NAGM and NAWM) of these patients
    corecore