451 research outputs found
Neuronal network disintegration: common pathways linking neurodegenerative diseases
Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration
Tackling clinical heterogeneity across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia spectrum using a transdiagnostic approach
The disease syndromes of amyotrophic lateral sclerosis and frontotemporal dementia display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke’s Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant frontotemporal dementia (n = 58) and amyotrophic lateral sclerosis-frontotemporal dementia (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus, and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-amyotrophic lateral sclerosis patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the amyotrophic lateral sclerosis-frontotemporal dementia and behavioural variant frontotemporal dementia groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76-90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in amyotrophic lateral sclerosis-frontotemporal dementia relative to pure-amyotrophic lateral sclerosis. In contrast, pure-amyotrophic lateral sclerosis displayed significantly greater parietal atrophy. Both behavioural variant frontotemporal dementia and amyotrophic lateral sclerosis-frontotemporal dementia were characterised by volume decrease in the frontal lobes relative to pure-amyotrophic lateral sclerosis. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in amyotrophic lateral sclerosis-frontotemporal dementia compared to pure-amyotrophic lateral sclerosis, and greater left motor cortex and insula atrophy relative to behavioural variant frontotemporal dementia. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum, with key structures including the motor cortex and insula, Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks
During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former
Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?
Background: The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players.
Methods: Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group).
Results: Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP
injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the noninjured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within
the injured shoulder, all muscle activation timings were later than in the reference group.
Conclusions: This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This
trend was not statistically significant in all cases
Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias
The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
Assessing clinical communication skills in physicians: are the skills context specific or generalizable
<p>Abstract</p> <p>Background</p> <p>Communication skills are essential for physicians to practice Medicine. Evidence for the validity and domain specificity of communication skills in physicians is equivocal and requires further research. This research was conducted to adduce evidence for content and context specificity of communication skills and to assess the usefulness of a generic instrument for assessing communication skills in International Medical Graduates (IMGs).</p> <p>Methods</p> <p>A psychometric design was used for identifying the reliability and validity of the communication skills instruments used for high-stakes exams for IMG's. Data were collected from 39 IMGs (19 men – 48.7%; 20 women – 51.3%; Mean age = 41 years) assessed at 14 station OSCE and subsequently in supervised clinical practice with several instruments (patient surveys; ITERs; Mini-CEX).</p> <p>Results</p> <p>All the instruments had adequate reliability (Cronbach's alpha: .54 – .96). There were significant correlations (r range: 0.37 – 0.70, <it>p </it>< .05) of communication skills assessed by examiner with standardized patients, and of mini-CEX with patient surveys, and ITERs. The intra-item reliability across all cases for the 13 items was low (Cronbach's alpha: .20 – .56). The correlations of communication skills within method (e.g., OSCE or clinical practice) were significant but were non-significant between methods (e.g., OSCE and clinical practice).</p> <p>Conclusion</p> <p>The results provide evidence of context specificity of communication skills, as well as convergent and criterion-related validity of communication skills. Both in OSCEs and clinical practice, communication checklists need to be case specific, designed for content validity.</p
The effect of a sports chiropractic manual therapy intervention on the prevention of back pain, hamstring and lower limb injuries in semi-elite Australian Rules footballers: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Hamstring injuries are the most common injury in Australian Rules football. It was the aims to investigate whether a sports chiropractic manual therapy intervention protocol provided in addition to the current best practice management could prevent the occurrence of and weeks missed due to hamstring and other lower-limb injuries at the semi-elite level of Australian football.</p> <p>Methods</p> <p>Sixty male subjects were assessed for eligibility with 59 meeting entry requirements and randomly allocated to an intervention (n = 29) or control group (n = 30), being matched for age and hamstring injury history. Twenty-eight intervention and 29 control group participants completed the trial. Both groups received the current best practice medical and sports science management, which acted as the control. Additionally, the intervention group received a sports chiropractic intervention. Treatment for the intervention group was individually determined and could involve manipulation/mobilization and/or soft tissue therapies to the spine and extremity. Minimum scheduling was: 1 treatment per week for 6 weeks, 1 treatment per fortnight for 3 months, 1 treatment per month for the remainder of the season (3 months). The main outcome measure was an injury surveillance with a missed match injury definition.</p> <p>Results</p> <p>After 24 matches there was no statistical significant difference between the groups for the incidence of hamstring injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051) and primary non-contact knee injury (OR:0.116, 95% CI:0.013-1.019, p = 0.051). The difference for primary lower-limb muscle strains was significant (OR:0.097, 95%CI:0.011-0.839, p = 0.025). There was no significant difference for weeks missed due to hamstring injury (4 v14, χ2:1.12, p = 0.29) and lower-limb muscle strains (4 v 21, χ2:2.66, p = 0.10). A significant difference in weeks missed due to non-contact knee injury was noted (1 v 24, χ2:6.70, p = 0.01).</p> <p>Conclusions</p> <p>This study demonstrated a trend towards lower limb injury prevention with a significant reduction in primary lower limb muscle strains and weeks missed due to non-contact knee injuries through the addition of a sports chiropractic intervention to the current best practice management.</p> <p>Trial registration</p> <p>The study was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12608000533392).</p
Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum
Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology
Thalamic and Cerebellar Regional Involvement across the ALS–FTD Spectrum and the Effect of C9orf72
Data Availability Statement: Data will be available on request from the authors until 2030.Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/brainsci12030336/s1, Table S1: Spearman’s correlations between w-scores and behavioural and cognitive total scores across the clinical and genetic groups. Table S2: Spearman’s correlations between w-scores and behavioural and cognitive subscores across the clinical and genetic groups.Copyright © 2022 by the authors. . Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of the same disease spectrum. While thalamic–cerebellar degeneration has been observed in C9orf72 expansion carriers, the exact subregions involved across the clinical phenotypes of the ALS–FTD spectrum remain unclear. Using MRIs from 58 bvFTD, 41 ALS–FTD and 52 ALS patients compared to 57 controls, we aimed to delineate thalamic and cerebellar subregional changes across the ALS–FTD spectrum and to contrast these profiles between cases with and without C9orf72 expansions. Thalamic involvement was evident across all ALS–FTD clinical phenotypes, with the laterodorsal nucleus commonly affected across all groups (values below the 2.5th control percentile). The mediodorsal nucleus was disproportionately affected in bvFTD and ALS–FTD but not in ALS. Cerebellar changes were only observed in bvFTD and ALS–FTD predominantly in the superior–posterior region. Comparison of genetic versus sporadic cases revealed significantly lower volumes exclusively in the pulvinar in C9orf72 expansion carriers compared to non-carriers, irrespective of clinical syndrome. Overall, bvFTD showed significant correlations between thalamic subregions, level of cognitive dysfunction and severity of behavioural symptoms. Notably, strong associations were evident between mediodorsal nucleus atrophy and severity of behavioural changes in C9orf72-bvFTD (r = −0.9, p < 0.0005). Our findings reveal distinct thalamic and cerebellar atrophy profiles across the ALS–FTD spectrum, with differential impacts on behaviour and cognition, and point to a unique contribution of C9orf72 expansions in the clinical profiles of these patients.This work was supported in part by funding to ForeFront, a collaborative research group dedicated to the study of frontotemporal dementia and motor neurone disease, from the National Health and Medical Research Council of Australia (NHMRC) program grant (GNT1037746 to O.P., M.C.K. and J.R.H.) and the Australian Research Council Centre of Excellence in Cognition and Its Disorders Memory Program (#CE110001021 to O.P. and J.R.H.) and other grants/sources (NHMRC project grant GNT1003139 to O.P.), and Royal Australasian College of Physicians, MND Research Institute of Australia. We are grateful to the research participants involved with the ForeFront research studies. R.M.A. is an NHMRC Early Career Fellow (#1120770). O.P. was an NHMRC Senior Research Fellow (GNT1103258). M.B. is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). M.B.’s work was also supported by the UK Dementia Research Institute, which receives its funding from DRI Ltd., funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. M.I. is supported by an Australian Research Council Future Fellowship (FT160100096). J.D.R. has received funding from an MRC Clinician Scientist fellowship (MR/M008525/1) as well as from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. M.C.K. receives funding from the NHMRC Partnership Project (APP1153439) and Practitioner Fellowship (APP1156093) schemes
- …