30 research outputs found

    Human Herpesvirus 8 (HHV8) Sequentially Shapes the NK Cell Repertoire during the Course of Asymptomatic Infection and Kaposi Sarcoma

    Get PDF
    The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8) has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi's sarcoma (KS). Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2) as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells

    Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity

    Get PDF
    Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity

    Altered natural killer cell subset homeostasis and defective chemotactic responses in paroxysmal nocturnal hemoglobinuria.

    No full text
    In paroxysmal nocturnal hemoglobinuria (PNH), hematopoietic cells lacking glycosylphosphatidylinositol (GPI)-linked proteins on their surface (GPI(neg)) exist alongside normal (GPI+) cells. Analysis of natural killer (NK) cell subsets in 47 PNH patients revealed that the ratio of CD56(bright):CD56(dim) NK cells differed in the GPI+ and GPI(neg) populations, with GPI(neg)CD56(bright) NK cells significantly more abundant in peripheral blood than their normal GPI+ counterparts. Indeed, GPI+CD56(bright) NK cells were not detected in the peripheral blood of some patients, suggesting their trafficking to a niche unavailable to the GPI(neg)CD56(bright) NK cell population. Defective cellular trafficking in this disease was supported by findings showing differential chemokine receptor expression between GPI+ and GPI(neg) NK cells and impaired stromal cell-derived factor 1 (SDF-1)-induced chemotaxis of GPI(neg) NK cells. Our results indicate a role for GPI-linked proteins in NK cell subset homeostasis and suggest that differential chemokine responses might contribute to the balance of GPI+ and GPI(neg) populations in this disease

    Transforming growth factor-β1 in congenital ureteropelvic junction obstruction: diagnosis and follow-up

    No full text
    OBJECTIVE: To assess the role of transforming growth factor-β1 (TGF-β1) in congenital ureteropelvic junction obstruction at diagnosis and during postoperative follow-up. MATERIAL AND METHODS: We conducted a case-control study including 19 patients with a mean age of 6.7 years and 19 matched controls. All patients presented negative voiding cystourethrography, obstructive diuretic renogram and underwent dismembered pyeloplasty. Urinary TGF-β1 and other markers were measured pre-, intra- and postoperatively. RESULTS: The mean bladder urine TGF-β1 concentration in obstructed patients prior to pyeloplasty was higher than in controls (92.5 pg/mL ± 16.8 vs. 35.8 pg/mL ± 16.2; p = 0.0001). The mean renal pelvic urine TGF-β1 concentration in the hydronephrotic kidney was higher than in the preoperative bladder urine sample (122.3 pg/mL ± 43.9 vs. 92.5 pg/mL ± 16.8; p = 0.036). Postoperative mean TGF-β1 concentration was significantly lower than preoperative TGF-β1 (48.7 pg/mL ± 13.1 vs. 92.5 pg/mL ± 16.8; p = 0.0001). CONCLUSION: TGF-β1 is a cytokine leading to renal fibrosis. The measurement of urinary TGF-β1 could become a useful tool for the diagnosis of obstructive hydronephrosis and the evaluation of the parenchyma function status, pre and postoperatively
    corecore