318 research outputs found

    Non-invasive management of peripheral arterial disease.

    No full text
    BACKGROUND: Peripheral arterial disease (PAD) is common and symptoms can be debilitating and lethal. Risk management, exercise, radiological and surgical intervention are all valuable therapies, but morbidity and mortality rates from this disease are increasing. Circulatory enhancement can be achieved using simple medical electronic devices, with claims of minimal adverse side effects. The evidence for these is variable, prompting a review of the available literature. METHODS: Embase and Medline were interrogated for full text articles in humans and written in English. Any external medical devices used in the management of peripheral arterial disease were included if they had objective outcome data. RESULTS: Thirty-one papers met inclusion criteria, but protocols were heterogenous. The medical devices reported were intermittent pneumatic compression (IPC), electronic nerve (NMES) or muscle stimulators (EMS), and galvanic electrical dressings. In patients with intermittent claudication, IPC devices increase popliteal artery velocity (49-70 %) and flow (49-84 %). Gastrocnemius EMS increased superficial femoral artery flow by 140 %. Over 4.5-6 months IPC increased intermittent claudication distance (ICD) (97-150 %) and absolute walking distance (AWD) (84-112 %), with an associated increase in quality of life. NMES of the calf increased ICD and AWD by 82 % and 61-150 % at 4 weeks, and 26 % and 34 % at 8 weeks. In patients with critical limb ischaemia IPC reduced rest pain in 40-100 % and was associated with ulcer healing rates of 26 %. IPC had an early limb salvage rate of 58-83 % at 1-3 months, and 58-94 % at 1.5-3.5 years. No studies have reported the use of EMS or NMES in the management of CLI. CONCLUSION: There is evidence to support the use of IPC in the management of claudication and CLI. There is a building body of literature to support the use of electrical stimulators in PAD, but this is low level to date. Devices may be of special benefit to those with limited exercise capacity, and in non-reconstructable critical limb ischaemia. Galvanic stimulation is not recommended

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    Detection methods predict differences in biology and survival in breast cancer patients

    Get PDF
    BackgroundThe aim of this study was to measure the biological characteristics involved in tumorigenesis and the progression of breast cancer in symptomatic and screen-detected carcinomas to identify possible differences.MethodsFor this purpose, we evaluated clinical-pathological parameters and proliferative and apoptotic activities in a series of 130 symptomatic and 161 screen-detected tumors.ResultsAfter adjustment for the smaller size of the screen-detected carcinomas compared with symptomatic cancers, those detected in the screening program presented longer disease-free survival (RR = 0.43, CI = 0.19-0.96) and had high estrogen and progesterone receptor concentrations more often than did symptomatic cancers (OR = 3.38, CI = 1.72-6.63 and OR = 3.44, CI = 1.94-6.10, respectively). Furthermore, the expression of bcl-2, a marker of good prognosis in breast cancer, was higher and HER2/neu expression was lower in screen-detected cancers than in symptomatic cancers (OR = 1.77, CI = 1.01-3.23 and OR = 0.64, CI = 0.40-0.98, respectively). However, when comparing prevalent vs incident screen-detected carcinomas, prevalent tumors were larger (OR = 2.84, CI = 1.05-7.69), were less likely to be HER2/neu positive (OR = 0.22, CI = 0.08-0.61) and presented lower Ki67 expression (OR = 0.36, CI = 0.17-0.77). In addition, incident tumors presented a shorter survival time than did prevalent ones (RR = 4.88, CI = 1.12-21.19).ConclusionsIncident carcinomas include a variety of screen-detected carcinomas that exhibit differences in biology and prognosis relative to prevalent carcinomas. The detection method is important and should be taken into account when making therapy decisions

    Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. They have evolved terrestrial taxa in more than nine lineages, most of which originated during the Paleozoic or Mesozoic. The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic. The pomatiopsine diversity is particularly high in the Japanese Archipelago and the terrestrial taxa occur only in this region. In this study, we conducted thorough samplings of Japanese pomatiopsid species and performed molecular phylogenetic analyses to explore the patterns of diversification and terrestrial invasion.</p> <p>Results</p> <p>Molecular phylogenetic analyses revealed that Japanese Pomatiopsinae derived from multiple colonization of the Eurasian Continent and that subsequent habitat shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages. Each lineage comprises amphibious and terrestrial species, both of which are confined to the mountains in heavy-snow regions facing the Japan Sea. The estimated divergence time suggested that diversification of these terrestrial lineages started in the Late Miocene, when active orogenesis of the Japanese landmass and establishment of snowy conditions began.</p> <p>Conclusions</p> <p>The terrestrial invasion of Japanese Pomatiopsinae occurred at least twice beside the mountain streamlets of heavy-snow regions, which is considered the first case of this event in the area. Because snow coverage maintains stable temperatures and high humidity on the ground surface, heavy-snow conditions may have paved the way for these organisms from freshwater to land via mountain streamlets by preventing winter desiccation in mountain valleys. The fact that the terrestrialization of Pomatiopsidae occurred only in year-round wet environments, but not in seasonally dried regions, provides new insight into ancient molluscan terrestrialization.</p

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Gene Expression Patterns in Larval Schistosoma mansoni Associated with Infection of the Mammalian Host

    Get PDF
    The schistosome cercaria develops from undifferentiated germ balls within the daughter sporocyst located in the hepatopancreas of its snail intermediate host. This is where the proteins it uses to infect humans are synthesised. After a brief free life in fresh water, if the cercaria locates a host, it infects by direct penetration through the skin. It then transforms into the schistosomulum stage, adapted for life in human tissues. We have designed a large scale array comprising probes representing all known schistosome genes and used it in hybridisation experiments to establish which genes are turned on or off in the parasite during these stages in its life cycle. Genes encoding proteins involved in cell division were prominent in the germ ball along with those for proteases and potential immunomodulators, deployed during skin penetration. The non-feeding cercaria was the least active at synthesising proteins. Conversion to the schistosomulum was accompanied by transcription of genes involved in body remodeling, including production of a new outer surface, and gut activation long before ingestion of red blood cells begins. Our data help us to understand better the proteins deployed to achieve infection, and subsequent adaptations necessary for establishment of the parasite in the human host

    Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.

    Get PDF
    Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies

    How Does Spatial Study Design Influence Density Estimates from Spatial Capture-Recapture Models?

    Get PDF
    When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km2. Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species

    Heritable Differences in Schooling Behavior among Threespine Stickleback Populations Revealed by a Novel Assay

    Get PDF
    Identifying the proximate and ultimate mechanisms of social behavior remains a major goal of behavioral biology. In particular, the complex social interactions mediating schooling behavior have long fascinated biologists, leading to theoretical and empirical investigations that have focused on schooling as a group-level phenomenon. However, methods to examine the behavior of individual fish within a school are needed in order to investigate the mechanisms that underlie both the performance and the evolution of schooling behavior. We have developed a technique to quantify the schooling behavior of an individual in standardized but easily manipulated social circumstances. Using our model school assay, we show that threespine sticklebacks (Gasterosteus aculeatus) from alternative habitats differ in behavior when tested in identical social circumstances. Not only do marine sticklebacks show increased association with the model school relative to freshwater benthic sticklebacks, they also display a greater degree of parallel swimming with the models. Taken together, these data indicate that marine sticklebacks exhibit a stronger tendency to school than benthic sticklebacks. We demonstrate that these population-level differences in schooling tendency are heritable and are shared by individuals within a population even when they have experienced mixed-population housing conditions. Finally, we begin to explore the stimuli that elicit schooling behavior in these populations. Our data suggest that the difference in schooling tendency between marine and benthic sticklebacks is accompanied by differential preferences for social vs. non-social and moving vs. stationary shelter options. Our study thus provides novel insights into the evolution of schooling behavior, as well as a new experimental approach to investigate the genetic and neural mechanisms that underlie this complex social behavior
    corecore