34 research outputs found

    Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages

    Get PDF
    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours

    Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica

    Get PDF
    Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization patterns

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    Plant hormone transporters: what we know and what we would like to know

    Full text link

    Twin study of the heritability of recognition thresholds for sour and salty taste

    No full text
    Seventy-four pairs of monozygotic (identical) twins and 35 pairs of dizygotic (fraternal) twins provided recognition thresholds (modified Harris-Kalmus test) for the sourness of citric acid and the saltiness of sodium chloride during the Twins Days Festival in Twinsburg, OH. Variance components (ACE) models were applied to the data: total variation = additive genetic (A) + common environment (C) + nonshared environment (E). The best-fit model of variation in recognition thresholds for sourness included an additive genetic factor, accounting for 53% of the variance, but no common environment component. This level of heritability, on par with that of sensitivity to the bitter compounds 6-n-propylthiouracil and phenylthiocarbamide, strongly suggests that genetic factors play a larger role than shared environment in determining individual differences in recognition thresholds for sourness. In contrast, the best-fit model for saltiness recognition included a common environment component, accounting for 22% of the variance in thresholds, but no additive component. This result suggests that environment plays a larger role than genetics in determining individual differences in recognition thresholds for saltiness

    Year-round reproduction in a seasonal sea: biological cycle of the introduced ascidian Styela plicata in the Western Mediterranean

    Get PDF
    10 páginas, 6 figuras.The widely introduced ascidian Styela plicata is very common in the Western Mediterranean, an area that can act as a source for secondary introductions due to its high shipping activity. In order to understand the potential of this species to colonize new habitats, its reproductive features were assessed in the Western Mediterranean by means of monthly monitoring of two populations (Vilanova i la Geltru´ 41 1205300N, 1 4401100E; Blanes 41 4002900N, 2 4705600E) from January 2009 to December 2010. The reproductive activity of this species was assessed through gonad histology and a gonad index. Population size-structure was measured monthly in order to study recruitment dynamics. No clear seasonal pattern was observed, and mature gametes and recruits were present all year long. Spawning was potentially continuous, although it seemed punctuated with pulses of gamete release, particularly in spring. A prolonged reproductive period is likely to confer a competitive advantage on S. plicata in temperate seas, where most species reproduce seasonally, and may promote recurrent introductions as larvae are available for settlement on transport vectors over much of the year.This research was supported by the Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG 277038 within the 7th European Community Framework Program, by the Spanish Government projects CTM2010-22218 and CTM2010- 17755, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, and by a University of Barcelona APIF fellowship to MCP.Peer reviewe

    Are banana weevil borers a vector in spreading Fusarium oxysporum f. sp cubense tropical race 4 in banana plantations?

    No full text
    Fusarium wilt of banana is a destructive plant disease, caused by the soilborne pathogen Fusarium oxysporum f. sp. cubense (Foc). Once established, it spreads rapidly, destroys the banana plants and builds up inoculum in the soil. To improve control and containment strategies, this study examined the pattern and possible methods of Foc tropical race 4 (Foc TR4) spread on a plantation. To date, root-to-root dispersal within the soil has been the presumed means of spread, but the fact that the spread of Foc TR4 occurred beyond neighbouring plants on the four fields assessed inferred that this is not the only mechanism. The banana weevil, Cosmopolites sordidus, is widespread in banana plantations and viable spores were found on the exoskeletons of ten per cent of the weevils, which infers that they may be a vector. Controlling vectors such as C. sordidus in banana plantations may therefore help minimise the spread of Foc TR4
    corecore