79 research outputs found

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Depth Of Maximum Of Air-shower Profiles At The Pierre Auger Observatory. I. Measurements At Energies Above 1017.8ev

    Get PDF
    901

    Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Get PDF
    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6×1019 eV by analyzing cosmic rays with energies above E > = 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources

    The STAR experiment at the relativistic heavy ion collider

    Full text link

    Thermal studies on the sodium salts of aminosalicylic acids

    No full text
    The effect on the stability of the isomers of aminosalicylic acid of formation of their sodium salts has been studied by use of differential scanning calorimetry and thermogravimetry, coupled with evolved gas analysis by Fourier transform infrared spectroscopy. X-ray powder diffraction and infrared spectroscopy provided complementary information. The DSC curves for the sodium salts of all of the isomers showed complex dehydration/decomposition endotherms. From the initial mass losses of the TG curves, the amounts of water per mole of salt were estimated as 0.5, 2.4 and 1.4 moles for the sodium salts of 3-aminosalicylic acid, 4-aminosalicylic acid and 5-aminosalicylic acid, respectively. TG-FTIR results for the sodium salt of 3-aminosalicylic acid showed the evolution of carbon dioxide in three stages: below 150°C, between 200 and 300°C and continuous formation up to 500°C. This behaviour differs from that of 3-aminosalicylic acid itself, which forms CO2 between 225 and 290°C. For the sodium salt of 4-aminosalicylic acid, the formation of carbon dioxide starts from 250°C and is still being formed at about 650°C. 4-aminosalicylic acid decarboxylates above 150°C. 5-aminosalicylic acid and its sodium salt showed no evolution of carbon dioxide below 600°C

    Percutaneous absorption of chemicals: developing an understanding for the treatment of disease in frogs

    No full text
    The permeable nature of frog skin presents an alternative route for the delivery of therapeutic chemicals to treat disease in frogs. However, although therapeutic chemicals are often topically applied to the skin of frogs, their pharmacokinetics have rarely been reported. To provide evidence to guide both candidate drug and formulation selection, we highlight factors expected to influence percutaneous absorption through frog skin, including the anatomy and physiology of the skin and the physicochemical properties of applied therapeutic chemicals. Importantly, we also highlight the effects of the formulation on percutaneous absorption, especially the inclusion of potential penetration enhancers as excipients. Finally, we collate empirical data on the topical application of various therapeutic chemicals in postmetamorphic frogs and show that, in contrast to mammalian species, even large chemicals (i.e. >500 Da) and those with a wide range of log P values (−4 through +6) are likely to be absorbed percutaneously. Topical application in frogs thus promises a convenient and effective method for delivering systemic treatments of a diverse range of chemicals; however, further experimental quantification is required to ensure optimal outcomes
    corecore