536 research outputs found

    Daily Changes of Resting Metabolic Rate in Elite Rugby Union Players

    Get PDF
    Introduction: Preparation for competitive contact sport has been extensively researched. There are, however, limited data to guide players as to how the demands of their sport affect the energy requirements of recovery. We aimed to provide novel data on changes in resting metabolic rate (RMR) in contact sport athletes and relate these to the physical demands of training and competition. Methods: Twenty-two elite professional Premiership Rugby Union players were recruited to the study. Indirect calorimetry (Vyntus CPX canopy; CareFusion) was used to measure RMR each morning of the competitive game week, in a fasted, rested state. External loads for training and game play were monitored and recorded using global positioning systems (Catapult Innovations, Australia), whereas internal loads were tracked using rate of perceived exertion scales. Collisions were reviewed and recorded by expert video analysts for contacts in general play (breakdown and tackle area) or the set piece (scrum or maul). Results: There were significant (P = 0.005) mean increases in RMR of approximately 231 kcal the morning after (game day [GD] + 1) and 3 d after the game (GD + 3), compared with the day before the game (GD − 1). The players were exposed to internal and external loads during the training week comparable to that of a match day; however, despite the equivocal loads between training and game play, there were no significant increases in RMR after training. Conclusion: The collisions experienced in rugby match play are likely to be responsible for the significant increases in RMR at GD + 1 and GD + 3. Consequently, the measurement of RMR via indirect calorimetry may provide a novel noninvasive measure of the effects of collisions. This study provides a novel insight to the energy requirements of recovering from contact sport

    The concept of remembrance in Walter Benjamin

    Get PDF
    This thesis argues that the role played by the concept of remembrance (Eingedenken) in Walter Benjamin's 'theory of the knowledge of history' and in his engagement with Enlightenment universal history, is a crucial one. The implications of Benjamin's contention that history's 'original vocation' is 'remembrance' have hitherto gone largely unnoticed. The following thesis explores the meaning of the concept of remembrance and assesses the significance of this proposed link between history and memory, looking at both the mnemonic aspect of history and the historical facets of memory. It argues that by mobilising the simultaneously destructive and constructive capacities of remembrance, Benjamin sought to develop a critical historiography which would enable a radical encounter with a previously suppressed past. In so doing he takes up a stance (explicit and implicit) towards existing philosophical conceptions of history, in particular the idea of universal history found in German Idealism. Benjamin reveals an intention to retain the epistemological aspirations of universal history whilst ridding that approach of its apologetic moment. He criticises existing conceptions of history on the basis that each assumes homogeneous time to be the framework in which historical events occur. Insight into the distinctive temporality of remembrance proves to be the touchstone for this critique, and provides a paradigm for a very different conception of time. The thesis goes on to determine what is valid and what is problematic both in this concept of remembrance and in the theory of historical knowledge which it informs, by subjecting both to the most cogent criticisms which can be levelled at them. What emerges is not only the importance of this concept for an understanding of Benjamin's philosophy but the pertinence of this concept for any philosophical account of memory

    "Fuel for the Damage Induced": Untargeted Metabolomics in Elite Rugby Union Match Play.

    Get PDF
    The metabolic perturbations caused by competitive rugby are not well characterized. Our aim is to utilize untargeted metabolomics to develop appropriate interventions, based on the metabolic fluctuations that occur in response to this collision-based team sport. Seven members of an English Premiership rugby squad consented to provide blood, urine, and saliva samples daily, over a competitive week including gameday (GD), with physical demands and dietary intake also recorded. Sample collection, processing and statistical analysis were performed in accordance with best practice set out by the metabolomics standards initiative employing 700 MHz NMR spectroscopy. Univariate and multivariate statistical analysis were employed to reveal the acute energy needs of this high intensity sport are met via glycolysis, the TCA cycle and gluconeogenesis. The recovery period after cessation of match play and prior to training recommencing sees a re-entry to gluconeogenesis, coupled with markers of oxidative stress, structural protein degradation, and reduced fatty acid metabolism. This novel insight leads us to propose that effective recovery from muscle damaging collisions is dependent upon the availability of glucose. An adjustment in the periodisation of carbohydrate to increase GD+1 provision may prevent the oxidation of amino acids which may also be crucial to allay markers of structural tissue degradation. Should we expand the 'Fuel for the work required' paradigm in collision-based team sports to include 'Fuel for the damage induced'

    Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice

    Get PDF
    Whilst the assessment of body composition is routine practice in sport, there remains considerable debate on the best tools available, with the chosen technique often based upon convenience rather than understanding the method and its limitations. The aim of this manuscript was threefold: (1) provide an overview of the common methodologies used within sport to measure body composition, specifically hydro-densitometry, air displacement plethysmography, bioelectrical impedance analysis and spectroscopy, ultra-sound, three-dimensional scanning, dual-energy X-ray absorptiometry (DXA) and skinfold thickness; (2) compare the efficacy of what are widely believed to be the most accurate (DXA) and practical (skinfold thickness) assessment tools and (3) provide a framework to help select the most appropriate assessment in applied sports practice including insights from the authors’ experiences working in elite sport. Traditionally, skinfold thickness has been the most popular method of body composition but the use of DXA has increased in recent years, with a wide held belief that it is the criterion standard. When bone mineral content needs to be assessed, and/or when it is necessary to take limb-specific estimations of fat and fat-free mass, then DXA appears to be the preferred method, although it is crucial to be aware of the logistical constraints required to produce reliable data, including controlling food intake, prior exercise and hydration status. However, given the need for simplicity and after considering the evidence across all assessment methods, skinfolds appear to be the least affected by day-to-day variability, leading to the conclusion ‘come back skinfolds, all is forgiven’

    WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics

    Get PDF
    Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Β-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Β-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe

    Personality styles in patients with fibromyalgia, major depression and healthy controls

    Get PDF
    BACKGROUND: The fibromyalgia syndrome (FMS) is suggested to be a manifestation of depression or affective spectrum disorder. We measured the cognitive style of patients with FMS to assess personality styles in 44 patients with fibromyalgia syndrome (FMS) by comparing them with 43 patients with major depressive disorder (MDD) and 41 healthy controls (HC). METHODS: Personality styles were measured by the Sociotropy and Autonomy Scale (SAS) and the Dysfunctional Attitude Scale (DAS). The Structured Clinical interview for DSM Axis I was applied to Axis I disorders, while the Beck Depression Inventory was used to measure depression severity. RESULTS: Patients with FMS in general have a sociotropic personality style similar to patients with MDD, and different from HC, but FMS patients without a lifetime history of MDD had a cognitive personality style different from patients with MDD and similar to HC. CONCLUSION: These findings suggest that a depressotypic personality style is related to depressive disorder, but not to FMS

    Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis

    Get PDF
    Hypoxia-inducible factor (HIF-1) is the key transcription regulator for multiple angiogenic factors and is an appealing target. Ginsenoside-Rg1, a nontoxic saponin isolated from the rhizome of Panax ginseng, exhibits potent proangiogenic activity and has the potential to be developed as a new angiotherapeutic agent. However, the mechanisms by which Rg1 promotes angiogenesis are not fully understood. Here, we show that Rg1 is an effective stimulator of HIF-1α under normal cellular oxygen conditions in human umbilical vein endothelial cells. HIF-1α steady-state mRNA was not affected by Rg1. Rather, HIF-1α protein synthesis was stimulated by Rg1. This effect was associated with constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt and its effector p70 S6 kinase (p70S6K), but not extracellular-signal regulated kinase 1/2. We further revealed that HIF-1α induction triggered the expression of target genes, including vascular endothelial growth factor (VEGF). The use of small molecule inhibitors LY294002 or rapamycin to inhibit PI3K/Akt and p70S6K activities, respectively, resulted in diminished HIF-1α activation and subsequent VEGF expression. RNA interference-mediated knockdown of HIF-1α suppressed Rg1-induced VEGF synthesis and angiogenic tube formation, confirming that the effect was HIF-1α specific. Similarly, the angiogenic phenotype could be reversed by inhibition of PI3K/Akt and p70S6K. These results define a hypoxia-independent activation of HIF-1α, uncovering a novel mechanism for Rg1 that could play a major role in angiogenesis and vascular remodeling

    Real-Time Imaging of HIF-1α Stabilization and Degradation

    Get PDF
    HIF-1α is overexpressed in many human cancers compared to normal tissues due to the interaction of a multiplicity of factors and pathways that reflect specific genetic alterations and extracellular stimuli. We developed two HIF-1α chimeric reporter systems, HIF-1α/FLuc and HIF-1α(ΔODDD)/FLuc, to investigate the tightly controlled level of HIF-1α protein in normal (NIH3T3 and HEK293) and glioma (U87) cells. These reporter systems provided an opportunity to investigate the degradation of HIF-1α in different cell lines, both in culture and in xenografts. Using immunofluorescence microscopy, we observed different patterns of subcellular localization of HIF-1α/FLuc fusion protein between normal cells and cancer cells; similar differences were observed for HIF-1α in non-transduced, wild-type cells. A dynamic cytoplasmic-nuclear exchange of the fusion protein and HIF-1α was observed in NIH3T3 and HEK293 cells under different conditions (normoxia, CoCl2 treatment and hypoxia). In contrast, U87 cells showed a more persistent nuclear localization pattern that was less affected by different growing conditions. Employing a kinetic model for protein degradation, we were able to distinguish two components of HIF-1α/FLuc protein degradation and quantify the half-life of HIF-1α fusion proteins. The rapid clearance component (t1/2 ∼4–6 min) was abolished by the hypoxia-mimetic CoCl2, MG132 treatment and deletion of ODD domain, and reflects the oxygen/VHL-dependent degradation pathway. The slow clearance component (t1/2 ∼200 min) is consistent with other unidentified non-oxygen/VHL-dependent degradation pathways. Overall, the continuous bioluminescence readout of HIF-1α/FLuc stabilization in vitro and in vivo will facilitate the development and validation of therapeutics that affect the stability and accumulation of HIF-1α

    Acacia trees on the cultural landscapes of the Red Sea Hills

    Get PDF
    This paper examines interactions between five pastoral nomadic culture groups of the Egyptian and Sudanese Red Sea Hills and the acacia trees Acacia tortilis (Forssk.) Hayne subsp. tortilis and subsp. raddiana growing in their arid environments. A. tortilis is described as a keystone species both ecologically and culturally: the trees play such critical roles in ecosystems and social groups that their removal would greatly impact both systems. Interviews in the field with the Semitic, Arabic-speaking Ma‘aza and Ababda, and the Cushitic, Beja, Bidhaawyeet-speaking Bishaari, Amar Ar and Hadandawa nomads probed the cultural and ecological contexts of acacias in pastoral nomadism, revealing deep insight into traditional ecological knowledge and traditional perceptions and uses of the trees. The paper describes how this knowledge guides pastoral decision-making, with acacias as a particularly critical component of the pastoral livelihood in both normal and stressful circumstances. A. tortilis is the most important reliable vegetation resource for nomads while also providing fuel and other useful products, ecosystem services for people and animals, and increased biodiversity by providing diverse microhabitats and resources for other species. We describe aspects of kinship, territorial organization, spiritual beliefs and tribal law underlying the significance of trees on the cultural landscape. We discuss environmental and economic challenges to human/tree relationships and to pastoral livelihoods. We challenge views of nomads as agents of ecological destruction, and propose maintenance and restoration of traditional pastoralism as viable alternatives in dryland development
    corecore