3,273 research outputs found

    Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy

    Get PDF
    Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo

    Detection of Gene Expression in an Individual Cell Type within a Cell Mixture Using Microarray Analysis

    Get PDF
    BACKGROUND: A central issue in the design of microarray-based analysis of global gene expression is the choice between using cells of single type and a mixture of cells. This study quantified the proportion of lipopolysaccharide (LPS) induced differentially expressed monocyte genes that could be measured in peripheral blood mononuclear cells (PBMC), and determined the extent to which gene expression in the non-monocyte cell fraction diluted or obscured fold changes that could be detected in the cell mixture. METHODOLOGY/PRINCIPAL FINDINGS: Human PBMC were stimulated with LPS, and monocytes were then isolated by positive (Mono+) or negative (Mono-) selection. The non-monocyte cell fraction (MonoD) remaining after positive selection of monocytes was used to determine the effect of non-monocyte cells on overall expression. RNA from LPS-stimulated PBMC, Mono+, Mono- and MonoD samples was co-hybridised with unstimulated RNA for each cell type on oligonucleotide microarrays. There was a positive correlation in gene expression between PBMC and both Mono+ (0.77) and Mono- (0.61-0.67) samples. Analysis of individual genes that were differentially expressed in Mono+ and Mono- samples showed that the ability to detect expression of some genes was similar when analysing PBMC, but for others, differential expression was either not detected or changed in the opposite direction. As a result of the dilutional or obscuring effect of gene expression in non-monocyte cells, overall about half of the statistically significant LPS-induced changes in gene expression in monocytes were not detected in PBMC. However, 97% of genes with a four fold or greater change in expression in monocytes after LPS stimulation, and almost all (96-100%) of the top 100 most differentially expressed monocyte genes were detected in PBMC. CONCLUSIONS/SIGNIFICANCE: The effect of non-responding cells in a mixture dilutes or obscures the detection of subtle changes in gene expression in an individual cell type. However, for studies in which only the most highly differentially expressed genes are of interest, separating and analysing individual cell types may be unnecessary

    A gene signature of loss of oestrogen receptor (ER) function and oxidative stress links ER-positive breast tumours with an absent progesterone receptor and a poor prognosis

    Get PDF
    Prognostic gene signatures like the wound and hypoxia signature differ by assumptions of cellular growth. Although gene signatures show little overlap, they also track within the group of luminal breast tumours those with a high proliferation and poor prognosis. Oxidative stress is another assumption of cellular growth. It affects several pathological conditions through its influence on the regulation of protein kinases and signal transduction pathways. A comprehensive set of 62 core genes from cultured oestrogen- and oestrogen receptor-deprived epithelial breast cancer cells is responsive to three forms of oxidative stress. Evidence is presented that oxidative stress involves the development of an aggressive subset of primary oestrogen receptor-positive breast tumours

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} \approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A

    Get PDF
    © 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello

    Fluorescent Gold Nanoprobes for the Sensitive and Selective Detection for Hg2+

    Get PDF
    A simple, cost-effective yet rapid and sensitive sensor for on-site and real-time Hg2+ detection based on bovine serum albumin functionalized fluorescent gold nanoparticles as novel and environmentally friendly fluorescent probes was developed. Using this probe, aqueous Hg2+ can be detected at 0.1 nM in a facile way based on fluorescence quenching. This probe was also applied to determine the Hg2+ in the lake samples, and the results demonstrate low interference and high sensitivity

    Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB 23-431. Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells. © 2014 Macmillan Publishers Limited. All rights reserved.published_or_final_versio

    A study on the mutagenic effect of dichloromethane extract of pickled vegetables from high risk area for nasopharyngeal carcinoma (NPC)-in Sihui County

    Get PDF
    The mutagenic effect of dichloromethane extract of pickles collected from Sinhui County was examined. Sample I markedly increased the frequency of sister chromatid exchange (SCE) and the rate of micronucleus (MN) in mice. Sample II also induced an increase in SCE frequency significantly, but the increase in MN rate was slight. Chemical analyses showed that two samples of pickles contained 37.83ppb and 33.38ppb of volatile nitrosamines, respectively, which alone could not explain the observed mutagenic effect. These results sug ested that the pickled vegetables taken from NPC high-risk area, Sihui County, may contain some mutagen(s) besides volatile nitrosamines. 本文報告四會縣醃菜二氯甲烷提取液的誘變性試驗。醃菜樣本提取液Ⅰ號引起姐妹染色單體交換(SCE)率及微核(MN)率顯著升高,醃菜樣本提取液Ⅱ號亦引起SCE率明顯升高,但MN率僅略有升高。化學分析表明,該兩份醃菜的揮發性亞硝胺含量分別為37.83、33.38 ppb。醃菜提取液的誘變性似不能單用亞硝胺來解釋。實驗結果提示,鼻咽癌高發區四會縣醃菜中可能含有除揮發性亞硝胺以外的其他誘變性物質
    corecore