62 research outputs found

    Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates) began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales.</p> <p>Results</p> <p>Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks) by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest.</p> <p>Conclusions</p> <p>Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog portions). Incorporating density reductions and structural loss adjustments reduces uncertainty associated with standing dead tree biomass and C while improving consistency with field methods and documentation.</p

    FeCo/Graphite Nanocrystals for Multi-Modality Imaging of Experimental Vascular Inflammation

    Get PDF
    BACKGROUND: FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI. METHODS AND RESULTS: Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (n = 8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (p = 0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (n = 6, 270 µg Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (p = 0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries. CONCLUSIONS: FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation

    Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?

    Get PDF
    Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castillejaoccidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes

    A falling of the veils: turning points and momentous turning points in leadership and the creation of CSR

    Get PDF
    This article uses the life stories approach to leadership and leadership development. Using exploratory, qualitative data from a Forbes Global 2000 and FTSE 100 company, we discuss the role of the turning point (TP) as an important antecedent of leadership in corporate social responsibility. We argue that TPs are causally efficacious, linking them to the development of life narratives concerned with an evolving sense of personal identity. Using both a multi-disciplinary perspective and a multi-level focus on CSR leadership, we identify four narrative cases. We propose that they helped to re-define individuals’ sense of self and in some extreme cases completely transformed their self-identity as leaders of CSR. Hence we also distinguish the momentous turning point (MTP) that created a seismic shift in personality, through re-evaluation of the individuals’ personal values. We argue that whilst TPs are developmental experiences that can produce responsible leadership, the MTP changes the individuals’ personal priorities in life to produce responsible leadership that perhaps did not exist previously. Thus we appropriate Maslow’s (1976, p. 77) metaphorical phrase ‘A falling of the veils’ from his discussion of peak and desolation experiences that produce personal growth. Using a multi-disciplinary literature from social theory (Archer, 2012) moral psychology (Narvaez, 2009) and social psychology (Schwartz, 2010), we present a theoretical model that illustrates the psychological process of the (M)TP, thus contributing to the growing literature on the microfoundations of CSR

    Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice

    Full text link

    Asymmetric hemisphere activation in tenderness: evidence from EEG signals

    No full text
    Emotions are processed asymmetrically by the human brain. Frontal alpha asymmetry (FAA) as measured by electroencephalographic (EEG) power in the alpha band (8-13 Hz), is a sensitive indicator of asymmetric brain activity in the frontal cortex. The current study aimed to analyze the frontal EEG asymmetries in terms of valence and motivational direction. We presented 37 participants with three film excerpts that were selected from the standard emotional film database to elicit three target emotions: tenderness, anger, and neutrality. Participants&#39; self-reports on their induced emotional responses and EEG signals were recorded and analyzed. The results showed that individuals displayed lower alpha power in the left hemisphere than the right hemisphere when they were watching a tender film, indicating that tenderness was positive and related to approach motivation. In contrast, when watching an angry movie, participants showed higher alpha power in the left hemisphere than the right hemisphere, suggesting that anger was negative and associated with withdrawal motivation. These findings help to link positive and approach-motivated tenderness with greater left hemispheric activation and state-anger with greater right hemispheric activation through the analysis of FAA.</p
    corecore