56 research outputs found

    A closed loop brain-machine interface for epilepsy control using dorsal column electrical stimulation

    Get PDF
    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.We are grateful for the assistance from Jim Meloy for the design and production of the multielectrode arrays as well as setup development and maintenance, Laura Oliveira, Terry Jones, and Susan Halkiotis for administrative assistance and preparation of the manuscript. This work was funded by a grant from The Hartwell Foundation.info:eu-repo/semantics/publishedVersio

    Closing the loop for patients with epilepsy

    No full text
    In a long-term clinical trial, a responsive neurostimulation system was shown to reduce seizures and improve quality of life in patients with drugresistant epilepsy. Furthermore, these effects persisted over an extended time period. Will neurostimulation close the treatment gap for patients with refractory epilepsy

    Controversies in epilepsy: Debates held during the Fourth International Workshop on Seizure Prediction

    No full text
    Debates on 6 controversial topics were held during the Fourth International Workshop on Seizure Prediction (IWSP4) convened in Kansas City (July 4–7, 2009). The topics were 1) Ictogenesis: focus vs. network? 2) Spikes and seizures: step-relatives or siblings? 3) Ictogenesis: a result of hyposynchrony? 4) Can focal seizures be caused by excessive inhibition? 5) Do high-frequency oscillations (HFOs) provide relevant independent information? and 6) Phase synchronization – is it worthwhile as measured? This manuscript, written by the IWSP4 organizing committee and the debaters, summarizes the arguments presented during the debates
    • …
    corecore