80 research outputs found

    Optimization of PCR conditions to amplify microsatellite loci in the bunchgrass lizard (Sceloporus slevini) genomic DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites, also called Simple Sequence Repeats (SSRs), repetitions of nucleotide motifs of 1-5 bases, are currently the markers of choice due to their abundant distribution in the genomes, and suitability for high-throughput analysis. A total of five different primer pairs were optimized for polymerase chain reaction (PCR) to amplify microsatellite loci in total genomic DNA of bunchgrass lizards (<it>Sceloporus slevini</it>) collected from three sites in southeastern Arizona; the Sonoita Plain, Chiricahua Mountains and Huachuca Mountains.</p> <p>Findings</p> <p>The primers used for current investigation were originally designed for the Eastern Fence Lizard (<it>Sceloporus undulatus</it>). Five primer pairs were selected based on annealing temperatures for optimizing the PCR conditions to amplify with bunchgrass lizards. Different concentrations of DNA and annealing temperature were optimized. While keeping other reagents constant, a DNA concentration, 37.5 ng in the final reaction volume and PCR conditions of an initial denaturation of 94°C for five minutes, an annealing temperature of 55°C and final extension of 72°C for four minutes gave the best amplification for all the primer pairs.</p> <p>Conclusions</p> <p>Modifying the standard protocol for annealing temperatures and final extension time increases the success of cross amplification of specific microsatellite loci in the bunchgrass lizard. A loading volume of 5 ul DNA at a concentration of 10 ng/ul and a 2% agarose for gel electrophoresis were observed the best for cross amplification of selected five primer pairs on bunch grass lizard.</p> <p>Trial Registration</p> <p>The research was conducted with Arizona Game and Fish Department scientific collecting permits SP565256, SP657407 & SP749119 to Dr. Christian A d'Orgeix.</p

    Sporadic Colorectal Cancer Development Shows Rejuvenescence Regarding Epithelial Proliferation and Apoptosis

    Get PDF
    Background and Aims: Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency, uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the proliferation- and apoptosis-regulating gene expression alterations. Materials and Methods: Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas (n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34) in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and independent sample sets (n1=6, n2=6, n3 = 6). Results: Mitotic index (MI) was significantly higher (p,0.05) in intact juvenile (MI = 0.3360.06) and CRC samples (MI = 0.4260.10) compared to healthy adult samples (MI = 0.1560.06). In contrast, apoptotic index (AI) was decreased in children (0.1360.06) and significantly lower in cancer (0.0660.03) compared to healthy adult samples (0.1760.05). Eight proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g. SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in CRC. Conclusion: Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile colonic epithelium

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link
    corecore