37 research outputs found

    Blinded predictions of distribution coefficients in the SAMPL5 challenge

    Get PDF
    In the context of the SAMPL5 challenge water-cyclohexane distribution coefficients for 53 drug-like molecules were predicted. Four different models based on molecular dynamics free energy calculations were tested. All models initially assumed only one chemical state present in aqueous or organic phases. Model A is based on results from an alchemical annihilation scheme; model B adds a long range correction for the Lennard Jones potentials to model A; model C adds charging free energy corrections; model D applies the charging correction from model C to ionizable species only. Model A and B perform better in terms of mean-unsigned error ([Formula: see text] D units − 95 % confidence interval) and determination coefficient [Formula: see text] , while charging corrections lead to poorer results with model D ([Formula: see text] and [Formula: see text] ). Because overall errors were large, a retrospective analysis that allowed co-existence of ionisable and neutral species of a molecule in aqueous phase was investigated. This considerably reduced systematic errors ([Formula: see text] and [Formula: see text] ). Overall accurate [Formula: see text] predictions for drug-like molecules that may adopt multiple tautomers and charge states proved difficult, indicating a need for methodological advances to enable satisfactory treatment by explicit-solvent molecular simulations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10822-016-9969-1) contains supplementary material, which is available to authorized users

    Protein folding studies go global

    No full text

    System Design of Two Dimensional Microchip Separation Devices

    No full text

    A Python tool to set up relative free energy calculations in GROMACS

    No full text
    Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper [14], recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge [16]. Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations

    FreeSolv: a database of experimental and calculated hydration free energies, with input files

    No full text
    This work provides a curated database of experimental and calculated hydration free energies for small neutral molecules in water, along with molecular structures, input files, references, and annotations. We call this the Free Solvation Database, or FreeSolv. Experimental values were taken from prior literature and will continue to be curated, with updated experimental references and data added as they become available. Calculated values are based on alchemical free energy calculations using molecular dynamics simulations. These used the GAFF small molecule force field in TIP3P water with AM1-BCC charges. Values were calculated with the GROMACS simulation package, with full details given in references cited within the database itself. This database builds in part on a previous, 504-molecule database containing similar information. However, additional curation of both experimental data and calculated values has been done here, and the total number of molecules is now up to 643. Additional information is now included in the database, such as SMILES strings, PubChem compound IDs, accurate reference DOIs, and others. One version of the database is provided in the Supporting Information of this article, but as ongoing updates are envisioned, the database is now versioned and hosted online. In addition to providing the database, this work describes its construction process. The database is available free-of-charge via http://www.escholarship.org/uc/item/6sd403pz
    corecore