34 research outputs found

    Tephrochronology

    Get PDF
    Tephrochronology is the use of primary, characterized tephras or cryptotephras as chronostratigraphic marker beds to connect and synchronize geological, paleoenvironmental, or archaeological sequences or events, or soils/paleosols, and, uniquely, to transfer relative or numerical ages or dates to them using stratigraphic and age information together with mineralogical and geochemical compositional data, especially from individual glass-shard analyses, obtained for the tephra/cryptotephra deposits. To function as an age-equivalent correlation and chronostratigraphic dating tool, tephrochronology may be undertaken in three steps: (i) mapping and describing tephras and determining their stratigraphic relationships, (ii) characterizing tephras or cryptotephras in the laboratory, and (iii) dating them using a wide range of geochronological methods. Tephrochronology is also an important tool in volcanology, informing studies on volcanic petrology, volcano eruption histories and hazards, and volcano-climate forcing. Although limitations and challenges remain, multidisciplinary applications of tephrochronology continue to grow markedly

    Automated in-situ laser scanner for monitoring forest Leaf Area Index.

    Get PDF
    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean

    Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia

    Get PDF
    This study assessed the accuracy of land cover change (2000–2018) maps compiled from Landsat images with either automated digital processing or with visual interpretation for a tropical forest area in Indonesia. The accuracy assessment used a two-stage stratified random sampling involving a confusion matrix for assessing map accuracy and by estimating areas of land cover change classes and associated uncertainty. The reference data were high-resolution images from SPOT 6/7 and high-resolution images finer than 5 m obtained from Open Foris Collect Earth. Results showed that the map derived from automated digital processing had lower accuracy (overall accuracy 73–77%) compared to the map based on visual interpretation (overall accuracy 80–84%). The automated digital processing map error was in differentiating between native forest and plantation areas. While the visual interpretation map had a higher accuracy, it did not consistently differentiate between native forest and shrub areas. Future improvement of the digital map requires more accurate differentiation between forest and plantation to better support national forest monitoring systems for sustainable forest management

    Reliability and limitations of a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics

    No full text
    Leaf area index (LAI) or plant area index (PAI) are commonly used to represent canopy structure and dynamics, but daily estimation of these variables using traditional ground-based methods is impractical and prone to multiple errors during data acquisition and processing. Existing terrestrial laser scanners can provide accurate representation of forest canopy structure, but the sensors are expensive, data processing is complex, and measurements are typically confined to a single event, which severely limits their utility in the interpretation of canopy trends indicated by remotely sensed data. We tested a novel, low-cost terrestrial laser scanner for its capacity to provide reliable and successive assessments of canopy PAI in an evergreen eucalypt forest. Daily scans comprised of 920 range measurements were made by three scanners at one forest site over a two-year period, providing mostly consecutive estimates of PAI, and of vertical structure profiles (as Plant Area Volume Density, PAVD). Data filtering, involving objective statistical methods to identify outliers, indicated that scan quality was adversely affected by moist weather and moderate wind speeds (>4msâ 1), suggesting limited utility in some forest environments. Data cleaning (associated with sensor malfunctions) plus filtering removed 32 to 49% of scans, leaving on average 57% of data over the two-year period. Nonetheless, we found strong agreement between lidar-derived PAI estimates, and those from monthly hemispherical images (±0.1 PAI); with both methods indicating mostly stable PAI over multiple seasons. The PAVD profiles from the laser scanner indicated that leaf flush in the upper canopy concomitantly balanced leaf loss from the middle canopy in summer, which was consistent with measured summer peaks in litter fall. This clearly illustrated the advantages of three-dimensional lidar data over traditional two-dimensional PAI estimates in monitoring tree phenology, and in interpreting changes in canopy reflectance as detected by air- and space-borne remotely sensed data
    corecore