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Abstract: This study assessed the accuracy of land cover change (2000–2018) maps compiled from
Landsat images with either automated digital processing or with visual interpretation for a tropical
forest area in Indonesia. The accuracy assessment used a two-stage stratified random sampling
involving a confusion matrix for assessing map accuracy and by estimating areas of land cover change
classes and associated uncertainty. The reference data were high-resolution images from SPOT 6/7
and high-resolution images finer than 5 m obtained from Open Foris Collect Earth. Results showed
that the map derived from automated digital processing had lower accuracy (overall accuracy 73–77%)
compared to the map based on visual interpretation (overall accuracy 80–84%). The automated digital
processing map error was in differentiating between native forest and plantation areas. While the
visual interpretation map had a higher accuracy, it did not consistently differentiate between native
forest and shrub areas. Future improvement of the digital map requires more accurate differentiation
between forest and plantation to better support national forest monitoring systems for sustainable
forest management.

Keywords: accuracy assessment; land cover change maps; automated digital processing; visual
interpretation; two-stage stratified random sampling

1. Introduction

The fastest rate of forest degradation is occurring in the tropics, where more than
7 million hectares per year are deforested annually [1]. Addressing the drivers of forest
loss requires accurate maps to enable a time-series analysis of land-use change to support
the development of effective mitigation actions. While remotely sensed images can be
automatically processed to predict global forest cover [2], the value of the maps for con-
servation management at local and regional scales relies on the accurate identification of
land cover classes [3]. Furthermore, in many tropical areas, the quality of remotely sensed
information is degraded by cloud cover or impacted by the nature of the terrain, posing
technical challenges for accurate digital mapping.

This study addresses the development of land cover change maps for Indonesia, which
has lost more than 68 million hectares to deforestation over recent decades (1950–2015) [4].
The rate of deforestation in Indonesia has varied over time, with a peak of around 1.9 million
hectares per year in the 1990s, decreasing to around 0.68 million hectares per year between
2010 and 2015 [5,6]. The main drivers of this deforestation have also varied over the last
few decades, from timber extraction (1966–1980) to conversion to shrublands, agriculture,
oil palm, and timber plantations [7].

In 1990 the Indonesian Government established a national forest monitoring system
(NFMS) that developed and applied a visual method to interpret Landsat images to map
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land cover according to 23 classes [8] that included 7 forest cover classes (primary dryland
forest, secondary dryland forest, primary swamp forest, secondary swamp forest, primary
mangrove forest, secondary mangrove forest, and plantation forest). Indonesia’s Ministry
of Environment and Forestry (MoEF), with considerable input of local knowledge and
ground-truthing, applied stratified random sampling to determine the accuracy of 88%
to 90% for visual interpretation (VI) maps but did not provide fine details of the method
for accuracy assessment and its uncertainty [8,9]. The VI mapping is subjective in the
delineation of the land classes and is considered an overly time- and labor-intensive method
for producing maps [8,10]. Although the VI map is currently Indonesia’s official map to
support forest management [11,12], it is recognized that automated methods offer the
ability to more rapidly and consistently map land cover classes in a measurable, repeatable,
and verifiable way [8,13]. Further impetus for the development of automated mapping
methods stems from the requirement for repeatable, accurate, and consistent land cover
change mapping according to the Intergovernmental Panel on Climate Change (IPCC)
principles of transparency, comparability, consistency, completeness, and accuracy [14].

Indonesia’s National Institute of Aeronautics and Space (LAPAN) has used automated
digital processing (ADP) to map forest and non-forest land cover classes, and this map
has been used by the MoEF for checking its VI maps [8,15]. The LAPAN ADP map was
based on temporal Landsat images such as the Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and Operational Land Imager (OLI) to produce two land cover
classes of forest and non-forest that is mapped using different indices for each region
of Indonesia [16]. However, a major drawback of these ADP maps is their inability to
differentiate natural forest from tree plantations [17], thereby limiting their application in
tracking the loss of native forest areas through time.

A statistically rigorous sampling-based accuracy assessment of land cover change
maps is essential to quantify data quality thus that map users, such as policymakers,
can evaluate the utility of maps to build trust and ensure confidence in public reporting,
policy, and investment decisions. High-resolution imagery, such as images provided by the
Open Foris Collect Earth or SPOT 6/7, in combination with a rigorous sampling strategy,
can be used to verify and test the accuracy of land cover change maps. For example, a
stratified random sampling with reference images from high resolution of the Google Earth
images time-series was applied to determine the accuracy of the U.S. National Land Cover
Database (NLCD) [18].

The primary aim of this study was to assess the map accuracy and the uncertainty of
land cover classes of Indonesia’s ADP and VI maps against high-resolution reference images
using statistically rigorous methods. This study will be used to identify the limitation of
the ADP map for future improvement of the map accuracy and to reduce its uncertainty
for building a robust national forest monitoring system, to support government policies
that rely on the information of land cover and land cover change.

2. Materials and Methods
2.1. Experimental Approach and Study Area

To evaluate the accuracy of both ADP and VI maps, a sample study area of more than
1.9 million hectares was selected in east Kalimantan on the island of Borneo (0◦50′20.32′′ S–
2◦31′56.61′′ S and 114◦54′49.33′′ E–116◦37′22.46′′ E), within the 4 regencies of Barito Timur,
Tabalong, Balangan, and Paser [19–21]. The area varies topographically from swampy
plains to hilly lowlands with elevations up to about 1550 m and with rainfall between
about 2000 and 4000 mm per year. Notably, oil palm and rubber plantations have increased
in areas in this region of Indonesia since the 1990s [22,23], thus that by 2017 over 350,000 ha
of plantations had been established in the study area [19–21].

The steps in the accuracy assessment of both the Landsat based VI and ADP land cover
change maps are set out below. To assess forest conversion to non-forest for the VI map, the
following 6 land cover classes, from the total of 23 land classes mapped, were considered
native forest (primary dryland forest, secondary dryland forest, primary mangrove forest,
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secondary mangrove forest, primary swamp forest, secondary swamp forest). The VI map
includes a plantation forest class that was considered as non-forest for the purposes of
compiling the land cover change maps. The land cover classes have also been used for
determining forest cover in the National Forest Reference Emission Level for Deforestation
and Forest Degradation that differentiates between natural forest and plantation forest [15].

The ADP map was classified into forest and non-forest. The forest cover class was
defined as an area of trees with >5 m height, >30% canopy cover, and excludes plantations,
such as oil palm. The ADP technique for mapping the annual forest extent and change
maps is described in Section 2.2, broadly following the methodology outlined in [16]. Once
the ADP forest extent and change maps were developed, their accuracy was assessed using
a time-series of high-resolution images alongside the VI maps, as described in Section 2.3.

2.2. Developing Automated Digital Land Cover Maps for 2000–2018

The ADP maps for 2000–2018 used the Landsat time-series from the Land Cover
Change Analysis (LCCA) project [16], based on images provided by the United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov/) data acquired in 2019. The
methods are outlined in [16] and consist of image pre-processing (manual scene selection,
orthorectification, radiometric terrain correction, cloud masking, and mosaic) and multi-
temporal land cover classification. Because manual scene selection was used to produce
the cloud-free mosaic, a cloud masking process was required. Previous studies have shown
limitations of optical images due to cloud cover, in which the addition of more temporal
images (based on a higher cloud cover threshold) produces lower land cover classification
accuracy compared to datasets composed with less cloud cover [24].

The ADP land cover classification detects forest and non-forest cover from spectral
indices that are different for each region due to their unique combination of geography
and vegetation type. The multitemporal land cover classification for the ADP maps was
processed using the Canonical Probability Network [16] to produce annual forest and
non-forest classes. The multitemporal processing reduces the uncertainty in the land cover
classification using probabilistic rules in the iteration process and predicts missing data
such as gaps caused by persistent cloud cover [25]. The target accuracy of the ADP map
was 85%.

2.3. Assessment of the Land Cover Change Map Accuracy

The accuracy of ADP and VI land cover change maps was assessed by 2 methods:
The confusion matrix, and by estimating the areas of land cover classes and associated
uncertainty [26,27]. The land cover change maps were assessed in 3 periods of 6 years
(2000–2006, 2006–2012, and 2012–2018). The VI maps were produced every 3 years, 2000,
2003, 2006, and 2009, and afterward annually between 2011 and 2018.

The assessments of the accuracy of the land cover change maps were based on a
comparison of the map labels to the reference labels of high-resolution images.

The high-resolution images for assessing the accuracy of the map were obtained from:

1. Commercial high-resolution SPOT 6/7 images (1.5 m resolution) from 2014 to 2019.
Nearly a full coverage of SPOT 6/7 images was obtained for the year 2018. Whilst
for the years before 2018, the availability of the SPOT 6/7 images was limited due
to cloud cover. The SPOT 6/7 images were provided by LAPAN (https://inderaja-
catalog.lapan.go.id/dd4/) data acquired in 2019.

2. High-resolution images for the years 2000–2018 from the open-source platform Open
Foris Collect Earth, developed by the Food and Agriculture Organization (FAO) of
the United Nations [28]. Images with spatial resolution finer than 5 m were obtained
from Google Earth and Microsoft Bing Maps, such as Quickbird, GeoEye-1, and
Worldview-1 and -2 imagery [29,30].

https://earthexplorer.usgs.gov/
https://inderaja-catalog.lapan.go.id/dd4/
https://inderaja-catalog.lapan.go.id/dd4/
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2.3.1. Validation Data Selection

This study used the 2-stage stratified random sampling method due to the limitation
of the high-spatial-resolution images used as the reference data, particularly for years
before 2006. The stratified random sampling was used to maintain spatial randomness and
to distribute the points proportionally across land cover classes [31,32]. The classes were
formed from the difference in annual land cover map classes (forest and non-forest) of the
ADP map. The land cover change classes used in this study were stable non-forest, stable
forest, forest loss, and forest regrowth.

The 2-stage stratified random sampling used hierarchical grids for the primary sam-
pling unit (PSU) and the secondary sampling unit (SSU). A comparable previous study
used 4 pixels (30 m) for the SSU within each PSU of 6 × 6 km [33]. The current study used
the PSU grids of 2 × 2 km resolution with the SSU block of 2 × 2 Landsat sized pixels
(50 × 50 m) from the land cover change map. This SSU resolution was aligned with the
minimum forested area (0.25 hectares) mapped in the VI map [11]. The selection of both
PSU and SSU was based on the proportion of the land cover change classes within the
stratification zone.

The overall sample size (n = 392 sample) was derived from 2 units of SSU, which
were randomly selected in each of 196 PSU (4.08%) from a total of 4808 PSU. The overall
sample size was comparable to a previous study that used 4.19% (n = 419 sample) from
10,000 simple size [34]. The overall sample size aimed to be distributed proportional to the
probability of the land cover classes of stable non-forest, stable forest, forest loss, and forest
regrowth within each stratification zone. To assess the accuracy of the map based on the
distribution of the sample units per class and zones, refer to Table 1 and Figure 1 for the
ADP map in 2012–2018. A similar process was applied to the 2000–2006 and 2006–2012
time intervals, including for the VI maps, with sample distribution based on the availability
of reference images.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. Sampling design of proportional distribution based on the two-stage stratified random 
sampling for the ADP map in 2012–2018 (the grey background refers to the availability of refer-
ence images). 

The Open Foris Collect Earth and SPOT 6/7 based validation data were used to assess 
the accuracy of ADP and VI maps, with agreement assessed at the SSU level. 

2.3.2. Confusion Matrix Accuracy Assessment 
The map accuracy was assessed using the confusion matrix, the standard error, and 

the 95% confidence interval to measure the uncertainty of the map classes as outlined in 
[26,27,35]. The confusion matrix provided information on the producer’s accuracy, user’s 
accuracy, and overall accuracy. The overall accuracy was the sum of correctly classified 
pixels divided by the total sample size pixels. The user’s accuracy corresponded to errors 
of commission and was used to inform the user (consumer) on the reliability of the classi-
fier that the areas classified as a specific land cover type or a certain percentage were cor-
rect. The producer’s accuracy corresponded to errors of omission. It was used to inform 
the analyst (producer) of the proportion of correctly classified areas in a particular cate-
gory [35]. The overall producer’s and user’s accuracy in the confusion matrix of the pop-
ulation data and total population where 𝑝  = 𝑛 /n was determined from Table 2. 

Table 2. Population of data (n) and the map proportion area (p) confusion matrix with map as rows (m) and reference as 
columns (r). 

  Reference (r) Under/Over 
Estimation, 

SSU 

Estimated 
Area, Hec-

tares   Class a Class b Class c Class d Total 𝑨𝒎 

Map (m) class a 𝑝  𝑝  𝑝  𝑝  𝑝  𝐴  𝐸  𝐻  
 class b 𝑝  𝑝  𝑝  𝑝  𝑝  𝐴  𝐸  𝐻  
 class c 𝑝  𝑝  𝑝  𝑝  𝑝  𝐴  𝐸  𝐻  
 class d 𝑝  𝑝  𝑝  𝑝  𝑝  𝐴  𝐸  𝐻  
 Total 𝑝  𝑝  𝑝  𝑝  n    
 𝐴  𝐴  𝐴  𝐴  𝐴   A  H 

Figure 1. Sampling design of proportional distribution based on the two-stage stratified random
sampling for the ADP map in 2012–2018 (the grey background refers to the availability of refer-
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Table 1. Distribution of the sample units per classes and zones (%) for automated digital processing
(ADP) map in 2012–2018.

Distribution
Per Class

Distribution Per Zones *)

Zone 3 Zone 9 Zone 2

Stable non-forest 26.9 81.4 7.8 10.8
Stable forest 51.2 89.0 4.5 6.5
Forest loss 12.6 70.8 18.0 11.2

Forest regrowth 9.3 89.4 6.8 3.8

*) Percentage of the sample units per class distributed in each zone.

The Open Foris Collect Earth and SPOT 6/7 based validation data were used to assess
the accuracy of ADP and VI maps, with agreement assessed at the SSU level.

2.3.2. Confusion Matrix Accuracy Assessment

The map accuracy was assessed using the confusion matrix, the standard error, and
the 95% confidence interval to measure the uncertainty of the map classes as outlined
in [26,27,35]. The confusion matrix provided information on the producer’s accuracy,
user’s accuracy, and overall accuracy. The overall accuracy was the sum of correctly
classified pixels divided by the total sample size pixels. The user’s accuracy corresponded
to errors of commission and was used to inform the user (consumer) on the reliability of
the classifier that the areas classified as a specific land cover type or a certain percentage
were correct. The producer’s accuracy corresponded to errors of omission. It was used to
inform the analyst (producer) of the proportion of correctly classified areas in a particular
category [35]. The overall producer’s and user’s accuracy in the confusion matrix of the
population data and total population where pab = nab/n was determined from Table 2.

Table 2. Population of data (n) and the map proportion area (p) confusion matrix with map as rows (m) and reference as
columns (r).

Reference (r) Under/Over
Estimation, SSU

Estimated Area,
HectaresClass a Class b Class c Class d Total Am

Map (m) class a paa pab pac pad pa+ Ama Ea Ha
class b pba pbb pbc pbd pb+ Amb Eb Hb
class c pca pcb pcc pcd pc+ Amc Ec Hc
class d pda pdb pdc pdd pd+ Amd Ed Hd
Total p+a p+b p+c p+d n

Ar Ara Arb Arc Ard A H

where: Class a = stable non-forest, b = stable forest, c = forest loss, d = forest regrowth; the total map proportion area is 1; A is the numbers
of sample units in SSU; Ha is the estimate area of each land cover class in hectares.

The confusion matrix used the total sample size per class in map (m) (class a), referred
to as na+, and the total sample size in reference data (r) (class a) referred to as n+a. The
overall accuracy was obtained by the diagonal sum of m and r divided by the total sample
size n. The user’s accuracy for map class a was determined by dividing the sample number
of class a by the total sample number of class a in m. The producer’s accuracy for reference
class a was determined by dividing the sample number of class a by the total sample
number of class a in r.

The variance of user’s accuracy, producer’s accuracy, and overall accuracy were based
on the stratified random sampling equation described in [27]. The formulas assumed pro-
portional allocation and ignored the cluster sampling feature of the 2 SSUs selected within
each PSU. The estimated standard errors were, therefore, likely to be slight underestimates.
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The standard error with 95% confidence interval (z = 1.96) for the user’s accuracy for map
class a, was estimated as follows:

ŜÊ
(
Ûa
)
= z

√√√√ naa
na+

(
1− naa

na+

)
(na+ − 1)

(1)

Variance for producer’s accuracy for map class a, is estimated as follows:

V̂
(

P̂a
)
=

1
N2
+a

[
N2

a+(1− P̂a)
2Ûa

(
1− Ûa

)
na+ − 1

+ P̂2
a

d

∑
i 6=a

N2
i+

nia
ni+

(
1− nia

ni+

)
/(ni+ − 1)

]
(2)

where N+a is the estimated marginal total number of SSU of reference class a, Na+ is the
estimated marginal total number of SSU of map class a.

Variance for overall accuracy, is estimated as follows:

V̂
(
Ô
)
=

d

∑
a=1

W2
a Ûa

(
1− Ûa

)
/(na+ − 1) (3)

where Wa is area proportion of map class a.
The standard error with 95% confidence interval for producer’s accuracy is estimated

as ±1.96
√

V̂
(

P̂a
)

and for overall accuracy ±1.96
√

V̂
(
Ô
)
.

2.3.3. Land Cover Class Area and Uncertainty

The numbers of sample units for map in SSU for class a referred as (Ama) is estimated
as the numbers of sample units (A) multiplied by (pa+). The numbers of sample units for
reference in SSU for class a referred as (Ara) was estimated as the numbers of sample units
(A) multiplied by (p+a). Map uncertainty (under or over-estimation based on the SSU) for
class a is expressed as Ea = Ama − Ara.

The area of each land cover in hectares was estimated by Ha = (Ama) ∗ k, where
k = 0.25. The uncertainty in the area estimate was based on the variance, the standard error,
and the 95% confidence interval as follows:

ŜÊ
(

P̂+a
)
=

√√√√∑
i

W2
i

nia
ni+

(
1− nia

ni+

)
(ni+ − 1)

=

√√√√∑
i

Wi P̂ia − P̂2
ia

ni+ − 1
(4)

where Wi is the area proportion of map class i. The uncertainty area for class a (in hectares)
is determined as ŜÊ(Ha) = (Ha) ∗ ŜÊ

(
P̂+a

)
. The 95% confidence interval obtained as

Ha ± 1.96 ∗ ŜÊ(Ha).

3. Results
3.1. Landcover Change 2000–2018

The ADP land cover change map (Figure 2) showed that forest loss in the initial period
(2000–2006) largely occurred in the east and south-east of the region, dominated by dryland
forests, and in the central region, dominated by lowland dipterocarp forests with elevation
less than 300 m [36,37]. This initial deforestation was generally scattered within the existing
stable forest (see Figure 2 zoom box A). Deforestation continued in the second period
(2006–2012) and was detected in the south-east and the north-east of the region, dominated
by lowland dipterocarp forests such as Shorea and Dipterocarpus with elevation less than
300 m [36–38]. The rapid forest loss was caused by the development of plantations (oil
palm and rubber). During the third period (2012–2018), forest loss largely occurred in the
western part of the region on the lowland wet-peat forests.
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SPOT images.

The forest regrowth was detected throughout the whole ADP mapping period and
largely occurred in the area of oil palm and rubber plantation development (see in Figure 2
zoom box B and C). Forest regrowth was observed in the eastern, middle, and south-west
of the region. The stable forested area identified from the ADP maps was predominantly in
the dryland forest in the northern and middle of the region with elevation largely <500 m.

3.2. Map Accuracy

The 392 SSUs were used to assess map accuracy for each period. The map percent
area of stable forest in the ADP map showed a gradual decrease from 65% in the period
of 2000–2006 to 45% in 2012–2018 (Figure 3). The map percent area of stable non-forest
increased steadily from 20% in 2000–2006 to 33% in 2012–2018, respectively. The map
percent area of forest regrowth also increased from 1% in 2000–2006 to 8% in 2012–2018.
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However, the map percent area of forest loss was relatively stable 13% in 2000–2006, 11%
in 2006–2012, and 14% in 2012–2018 (Figure 3).
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classified plantation as regrowth forest with a proportional area of 1.3% in the initial period
(Figure 3). An example of ADP misclassification was the commission error in the stable
forest class, caused by plantation (oil palm and rubber) being labeled as forest cover. The
VI method had higher user’s accuracy in detecting stable forest and forest loss classes
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3.3. Estimating the Area and Uncertainty of Mapped Land Cover Change Classes

The ADP method underestimated stable non-forest areas and overestimated other
land classes for all years (Appendix A, Tables A1–A6). For example, in 2000–2006, the stable
non-forest class was 706,486 ha, but the ADP estimated 387,586 ha. Therefore, the ADP
map underestimated stable non-forest by 45% or 318,900 ha of the total non-forest areas.
The ADP map indicated the extent of the stable forest at 1,255,975 ha, while the reference
estimated 1,005,761 ha—an overestimate of 25% (250,213 ha) of the total stable forest areas.
This trend was reversed for the VI method, where stable non-forest was overestimated
by 38% (264,932 ha), stable forest underestimated by 18% (181,528 ha), and the forest
loss class underestimated by 40% (83,404 ha). Moreover, the VI method showed some
inconsistency in the attribution of the forest regrowth class due to interpreter subjectivity.
For example, some instances of the interpreter attributing dry shrub in 2006 (non-forest
class) and secondary dryland forest in 2009, while validation using the Collect Earth and
the SPOT 7 images showed the areas were natural forest from 2000 to 2018 (Figure 2).

The ADP method detected a gradual increase of stable non-forest and forest regrowth,
while stable forest decreased through the observation period. The stable non-forest class
of the ADP map increased by 63% from 387,586 ha (±3609) in 2000–2006 to 632,894 ha
(±6697) in 2012–2018. Nevertheless, the stable non-forest of the ADP map was smaller
by 53% on average compared to the VI maps for all years. The decrease of the stable
forest was detected from both the ADP and VI maps between 2000 and 2018. The stable
forest estimated using the ADP map changed from 31% from 1,255,975 ha (±33,469) in
2000–2006 to 868,389 ha (±18,049) in 2012–2018. The stable forest estimated using the VI
maps changed from 824,234 ha (±6970) in 2000–2006 to 735,923 ha (±11,651) in 2012–2018.
The ADP map detected significant forest loss at 750,641 ha from 2000–2018, or 54% greater
compared to the VI map. Yet, the ADP map detected larger forest regrowth area compared
to the VI map for all periods.

4. Discussion

This study presents a comprehensive assessment of the accuracy of forest cover maps
derived from automated digital processing and visual interpretation from 2000–2018. Based
on the overall accuracy analysis, the current ADP map had lower accuracy compared to the
VI map for all periods. The lower accuracy of the ADP map was due to commission error of
labeling plantation (oil palm and rubber) as forest cover. Low user’s accuracy of the ADP
map in the first period (2000–2006) led to an overestimate of stable forest area compared
to the VI map. Moreover, the ADP method incorrectly mapped the dynamic growth of
plantations in the later periods as forest regrowth (Figure 2). This low accuracy of the ADP
method may be partially attributed to the reliance on optical images. Previous studies
have shown that the use of optical images makes it difficult to differentiate between forest
and dense canopy crops such as mature oil palm [17,39] as well as perennial agricultural
crops and plantations of less than 5 m height such as pineapple, tea, and soybean as tree
cover [3,40] due to similar spectral signal.

Another challenge of using optical images for monitoring forest extent and change
in tropical regions is persistent cloud cover [41]. For example, only 5% of Landsat image
scenes for Kalimantan and Papua in 2010 were free from cloud cover [16]. This limits
the application of optical images to produce continuity of temporal data. Therefore, the
accuracy of the current map may be improved by using multi-source data such as radar
and optical systems. Radar systems such as Sentinel-1 can penetrate clouds, smoke, haze
and operate in both day and nighttime modes [42,43].

In agreement with other studies, the multi-temporal classification process was useful
in reducing uncertainty [25,44,45]. The other advantage of multi-temporal processing is to
estimate land cover classes in areas of missing data due to cloud cover, using interpolation
and extrapolation of the maps spatially and temporally [16].

Consistent with previous studies [46], the VI process in this study was superior for
differentiating between plantation and natural forest. The VI method uses a comprehen-
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sive and contextual assessment of land cover based on an interpreter’s knowledge. The
interpreter uses visual pattern recognition to detect an object based on shape, size, pattern,
texture, shadow, site, and association. Moreover, one advantage of VI is in detecting
heterogeneity of land cover that affects spectral response [47]. However, the VI map was
inconsistent in detecting forest regrowth because accuracy varies with interpreter train-
ing, experience, and skill. Because VI is labor-intensive and time-consuming, the VI map
consistency is also subject to operator fatigue [48,49]. The overall accuracy of the VI map
was 80–84%, which was in contrast to previous studies claiming above 90% accuracy [8,9].
Such a discrepancy can be attributed to a more comprehensive assessment method used in
our study as well as reliance on high resolution satellite such as SPOT 6/7 imagery rather
than Landsat used for the accuracy assessment in previous studies [27,50].

In accordance with the IPCC principles, the ADP method produced land cover maps
in a repeatable and operationally efficient way. However, improvement of map accuracy
is required.

The current study used the two-stage stratified random sampling method for accurate
assessment of the maps because the method is cost-effective in assessing large areas with
limited reference data [33,51]. The method stratified the land cover classes based on
geographical stratification zones, with the flexibility to allocate the sample based on the
proportion of each land cover class. The two-stage stratified random sampling method
is suitable for assessing maps with a spatial unit larger than a pixel (blocks) and can
incorporate reference data error such as imprecise position [52]. The stratified sampling
method also provides a precise estimate for both the user’s accuracy and the producers’
accuracy, and it estimates a variance. An increase in precision may be obtained by selecting
fewer sample units within each PSU, and re-allocating these sample units to additional
PSUs [52].

The limitation of the current study was the small sample size that requires further
steps of cross-validation for multiple processing times to increase the accuracy of the
results [34]. However, advanced technologies provide the availability of various high-
resolution images of sufficient temporal representation allowing the selection of large
sample sizes to increase accuracy that is suitable for assessing large geographic areas with
heterogeneous class [27,34].

5. Conclusions

The Indonesian Government uses the VI maps supported by the ADP maps for na-
tional forest monitoring using Landsat images as the main input data. Accuracy assessment
of the land cover change maps is essential to quantify data quality for future improve-
ment of Indonesia’s national forest monitoring system. The improvement of ADP maps
is required to develop a robust NFMS and for the accurate updating and quality control
of the VI maps to monitor the forested area and its changes. We applied the two-stage
stratified random sampling process to assess the accuracy of the ADP and VI maps over
2000–2018 for Kalimantan. The two-stage stratified random sampling provides a cost-
effective method that is based on limited reference data. The stratified sampling provides
precision for user’s accuracy, producers’ accuracy, and its estimate variances are important
for reporting precision of estimate area and understanding sources of errors in maps.

The accuracy of the ADP and the VI maps was assessed using two methods: (1) A
confusion matrix with overall accuracy, user’s accuracy, and producer’s accuracy that
was quantified using reference sample units based on manual interpretation of SPOT 6/7
images (1.5-m resolution), and the temporal high-resolution images from the Open Foris
Collect Earth, and (2) by estimating the uncertainty associated with areas of land cover
change classes. The result showed that the ADP method produced lower overall accuracy
compared to the VI maps. This is primarily because of the commission error in mapping
plantation as natural forest cover due to their similar spectral signatures that caused high
variances in the forest loss class.
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The ADP map can be improved by refining the classification method to differentiate
plantation from natural forest. Improvement of the ADP map accuracy is important to
estimate forest area, carbon stocks, and changes as a part of a rigorous national forest
monitoring system. A repeatable, accurate, and consistent land cover change map would
comply with the IPCC principles of transparency, comparability, consistency, completeness,
and accuracy and would allow policymakers to track and manage land cover change for
sustainable forest management and investment decisions.
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Appendix A

Table A1. Description of population data and map proportion area confusion matrix for the automated digital processing of land cover change map in 2000–2006.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 75 2 2 0 79
0.95 (±0.049) 0.52(±0.021) 1,550,344 2,825,944 −1,275,600 387,586 (±3609)b) Map. pr 0.191 0.005 0.005 0 0.202

Stable
forest

P. data 47 195 14 0 256
0.76 (±0.052) 0.95 (±0.069) 5,023,901 4,023,046 1,000,855 1,255,975 (±33,469)Map. pr 0.120 0.497 0.036 0 0.653

Forest
loss

P. data 19 6 27 0 52
0.52 (±0.137) 0.63 (±0.107) 1,020,480 843,858 176,622 255,119 (±2932)Map. pr 0.048 0.015 0.069 0 0.133

Forest
regrowth

P. data 3 2 0 0 5
0 0 98,123 0 98,123 24,530 (±108)Map. pr 0.008 0.005 0 0 0.013

Total
P. data 144 205 43 0 392 Overall

0.76 (±0.056) 7,692,848 7,692,848 1,923,212Map. pr 0.367 0.523 0.110 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).
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Table A2. Description of population data and map proportion area confusion matrix for the visual interpretation of land cover change map in 2000–2006.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 138 37 23 0 198
0.70 (±0.064) 0.96 (±0.088) 3,885,673 2,825,944 1,059,729 971,418 (±22,651)b) Map. pr 0.352 0.094 0.059 0 0.505

Stable
forest

P. data 3 165 0 0 168
0.98 (±0.020) 0.80 (±0.019) 3,296,935 4,023,046 −726,111 824,234 (±6970)Map. pr 0.008 0.421 0 0 0.429

Forest
loss

P. data 3 3 20 0 26
0.77 (±0.166) 0.47 (±0.067) 510,240 843,858 −333,618 127,560 (±1089)Map. pr 0.008 0.008 0.051 0 0.066

Forest
regrowth

P. data 0 0 0 0 0
0 0 0 0 0 0Map. pr 0 0 0 0 0

Total
P. data 144 205 43 0 392 Overall

0.82 (±0.055) 7,692,848 7,692,848 1,923,212Map. pr 0.368 0.523 0.110 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).

Table A3. Description of population data and map proportion area confusion matrix for the automated digital processing of land cover change map in 2006–2012.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 101 5 5 0 111
0.91 (±0.053) 0.60 (±0.029) 2,168,520 3,306,747 −1,138,228 542,130 (±7343)b) Map. pr 0.258 0.013 0.011 0 0.282

Stable
forest

P. data 30 172 7 0 209
0.82 (±0.052) 0.93 (±0.065) 4,101,544 3,630,553 470,991 1,025,386 (±23,640)Map. pr 0.077 0.439 0.018 0 0.533

Forest
loss

P. data 16 2 27 0 45
0.60 (±0.145) 0.70 (±0.117) 883,108 755,548 127,560 220,777 (±2545)Map. pr 0.041 0.005 0.069 0 0.115

Forest
regrowth

P. data 22 6 0 0 28
0 0 539,677 0 539,677 134,919 (±1208)Map. pr 0.055 0.015 0 0 0.070

Total
P. data 169 185 39 0 392 Overall

0.77 (±0.058) 7,692,848 7,692,848 1,923,212Map. pr 0.430 0.472 0.098 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).
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Table A4. Description of population data and map proportion area confusion matrix for the visual interpretation of land cover change map in 2006–2012.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 157 45 11 0 213
0.74 (±0.059) 0.94 (±0.076) 4,170,230 3,277,310 892,920 1,042,558 (±25,591)b) Map. pr 0.399 0.115 0.028 0 0.542

Stable
forest

P. data 8 135 8 0 151
0.90 (±0.049) 0.73 (±0.038) 2,953,504 3,630,553 −677,049 738,376 (±12,411)Map. pr 0.019 0.344 0.020 0 0.384

Forest
loss

P. data 3 4 21 0 28
0.76 (±0.162) 0.53 (±0.079) 539,677 784,984 −245,308 134,919 (±1185)Map. pr 0.008 0.009 0.054 0 0.070

Forest
regrowth

P. data 0 2 0 0 2
0 0 29,437 0 29,437 7,359 (±28)Map. pr 0 0.004 0 0 0.004

Total
P. data 167 185 40 0 392 Overall

0.80 (±0.060) 7,692,848 7,692,848 1,923,212Map. pr 0.426 0.472 0.102 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).

Table A5. Description of population data and map proportion area confusion matrix for the automated digital processing of land cover change map in 2012–2018.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 124 4 1 0 129
0.96 (±0.033) 0.61 (±0.019) 2,531,575 4,003,421 −1,471,846 632,894 (±6697)b) Map. pr 0.316 0.010 0.003 0 0.329

Stable
forest

P. data 26 149 2 0 177
0.84 (±0.054) 0.87 (±0.059) 3,473,556 3,355,809 117,748 868,389 (±18,049)Map. pr 0.066 0.380 0.005 0 0.452

Forest
loss

P. data 35 7 14 0 56
0.25 (±0.114) 0.82 (±0.180) 1,098,978 333,618 765,360 274,745 (±3361)Map. pr 0.089 0.018 0.036 0 0.143

Forest
regrowth

P. data 19 11 0 0 30
0 0 588,738 0 588,738 147,185 (±1446)Map. pr 0.048 0.028 0 0 0.077

Total
P. data 204 171 17 0 392 Overall

0.73 (±0.044) 7,692,848 7,692,848 1,923,212Map. pr 0.520 0.436 0.043 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).
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Table A6. Description of population data and map proportion area confusion matrix for the visual interpretation of land cover change map in 2012–2018.

Map

Reference c) User’s
Accuracy

with SE in
Parentheses

c) Producer’s
Accuracy

with SE in
Parentheses

Number
of SSU for

Map d)

Number
of SSU for
Reference

d)

Over/Under
Estimate

d) (in SSU)

c) Estimation Area
with SE in

Parentheses
(Hectares)

Stable
Non-

Forest

Stable
Forest

Forest
Loss

Forest
Regrowth Total

Stable
Non-forest

a) P. data 184 40 1 0 225
0.82 (±0.051) 0.92 (±0.061) 4,415,538 3,924,922 490,615 1,103,884 (±26,795)b) Map. pr 0.469 0.102 0.003 0 0.574

Stable
forest

P. data 11 137 2 0 150
0.91 (±0.045) 0.75 (±0.037) 2,943,692 3,571,679 −627,988 735,923 (±11,651)Map. pr 0.028 0.349 0.005 0 0.383

Forest
loss

P. data 5 5 7 0 17
0.41 (±0.241) 0.70 (±0.255) 333,618 196,246 137,372 83,405 (±492)Map. pr 0.013 0.013 0.018 0 0.043

Forest
regrowth

P. data 0 0 0 0 0
0 0 0 0 0 0Map. pr 0 0 0 0 0

Total
P. data 200 182 10 0 392 Overall

0.84 (±0.054) 7,692,848 7,692,848 1,923,212Map. pr 0.510 0.464 0.026 0 1
a) P. data = population data, b) Map. pr. = map proportion area, c) SE with 95% confidence interval (CI), d) SSU is a block of 2 × 2 Landsat sized pixels (50 × 50 m).
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