70 research outputs found
LY 294002 inhibits adenosine receptor activation by a mechanism independent of effects on PI-3 kinase or casein kinase II
Adenosine reduces both evoked and spontaneous calcium-dependent acetylcholine (ACh) release through a mechanism downstream of calcium entry at amphibian motor nerve endings (Silinsky EM. J Physiol 1984; 346: 243-6). LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), an inhibitor of both phosphoinositide-3 kinase (PI-3 kinase) and casein kinase II, has been reported to increase spontaneous ACh release reflected in miniature endplate potential (MEPP) frequencies independently of intraterminal calcium at the frog neuromuscular junction (Rizzoli SO, Betz WJ. J Neurosci 2002; 22: 10680-). It has been suggested that the increase in MEPP frequency caused by LY 294002, is mediated through an action on synaptotagmins, vesicle associated calcium sensors believed to trigger synaptic vesicle exocytosis. We thus examined the effects of adenosine on MEPP frequencies and evoked ACh release reflected as endplate potentials (EPPs) in order to determine if the presumed calcium-independent ACh release is affected by adenosine. We also wanted to determine if PI-3 kinase or casein kinase II is involved in mediating or modulating the inhibitory effects of adenosine. To these ends, we examined the effects of adenosine in the presence of LY 294002, wortmannin (a highly selective the PI-3 kinase inhibitor), or DRB (5,6-dichlorobenzimidazole riboside, an inhibitor of casein kinase II). LY 294002 reduced the sensitivity of both MEPP frequencies and the nerve-evoked calcium dependent EPPs to adenosine. The occlusive effects of LY 294002 on the actions of adenosine on MEPPs and EPPs were overcome by increasing adenosine concentration. Neither wortmannin nor DRB had any effect on the sensitivity of the EPPs to adenosine indicating that neither PI-3 kinase nor casein kinase II inhibition mediates the reduction in motor-nerve terminal sensitivity to adenosine produced by LY 294002. The results indicate a competitive relationship between LY 294002 and adenosine at A1 receptors at the frog neuromuscular junction. This effect is independent of the previously described effects of LY 294002 on the exocytotic process, and is also independent of PI-3 kinase or casein kinase II
The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species
Photosynthetic capacity is one of the most sensitive parameters in vegetation models and its relationship to leaf nitrogen content links the carbon and nitrogen cycles. Process understanding for reliably predicting photosynthetic capacity is still missing. To advance this understanding we have tested across C3 plant species the coordination hypothesis, which assumes nitrogen allocation to photosynthetic processes such that photosynthesis tends to be co-limited by ribulose-1,5-bisphosphate (RuBP) carboxylation and regeneration. The coordination hypothesis yields an analytical solution to predict photosynthetic capacity and calculate area-based leaf nitrogen content (Na). The resulting model linking leaf photosynthesis, stomata conductance and nitrogen investment provides testable hypotheses about the physiological regulation of these processes. Based on a dataset of 293 observations for 31 species grown under a range of environmental conditions, we confirm the coordination hypothesis: under mean environmental conditions experienced by leaves during the preceding month, RuBP carboxylation equals RuBP regeneration. We identify three key parameters for photosynthetic coordination: specific leaf area and two photosynthetic traits (k3, which modulates N investment and is the ratio of RuBP carboxylation/oxygenation capacity () to leaf photosynthetic N content (Npa); and Jfac, which modulates photosynthesis for a given k3 and is the ratio of RuBP regeneration capacity (Jmax) to). With species-specific parameter values of SLA, k3 and Jfac, our leaf photosynthesis coordination model accounts for 93% of the total variance in Na across species and environmental conditions. A calibration by plant functional type of k3 and Jfac still leads to accurate model prediction of Na, while SLA calibration is essentially required at species level. Observed variations in k3 and Jfac are partly explained by environmental and phylogenetic constraints, while SLA variation is partly explained by phylogeny. These results open a new avenue for predicting photosynthetic capacity and leaf nitrogen content in vegetation models
HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells
INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model
Bioinformatics and molecular modeling in glycobiology
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed
Consensus recommendation for mouse models of ocular hypertension to study aqueous humor outflow and its mechanisms
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings
- …