16 research outputs found

    Reflection and Refraction Seismic Methods

    No full text
    Seismic reflection and refraction methods are routinely used to illuminate sub-seafloor geological relationships, thereby providing a means to investigate a wide range of Earth processes that influence submarine geomorphology. Since the birth of seismic methods for exploration of ore bodies and petroleum in the early part of the 20th century, progressive technological advancements have ensured that the seismic method remains a fundamental geophysical tool in both the oil and gas industry and scientific research. For both marine seismic reflection and refraction methods, the primary principles are based around the notion of sending artificially-generated sound waves downward into the Earth and recording the energy that returns to recording instruments (receivers). In the case of seismic reflection, the down-going wavefield reflects off geological boundaries characterized by density and velocity contrasts before being recorded by an array of receivers. In seismic refraction experiments, the notion is to record energy that has been refracted at multiple geological boundaries before, ultimately, being refracted at a critical angle and then returning to receivers on the seafloor. Survey designs for both methods are many and varied, ranging from relatively simple two-dimensional surveys, to multi-azimuth three-dimensional surveys that illuminate the subsurface from different directions. Although the state of the art in seismic methods is continually evolving, this chapter gives some examples of modern and developing trends that are relevant to investigations into submarine geomorphology. Examples include high-resolution 3D seismic imaging, high-frequency sub-bottom profiling, waveform inversion and deep-towed seismic acquisition. The strength of the seismic reflection method lies in its ability to gain insight into structural and stratigraphic relationships beneath the seafloor, as well as in investigating fluid flow processes. The refraction method, on the other hand, is often used as the tool of choice for crustal-scale investigations into deeply-rooted geological processes that shape the seafloor, such as plate tectonics and volcanism. As with all scientific methods, seismic methods are most powerful when combined with complementary geophysical, geological or geochemical methods to address a common Earth science question

    Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

    No full text
    Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites do not show a continuous range of patterns between two end members, but fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20 m high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate free sites (type 4). Each seep corresponds to a single type; ntermediates were not observed. Although the observed morphologies and backscatter patterns may have been caused by variations in sediment burial of seep carbonates or differential exhumation by erosion, they probably epresent varying onsets of authigenic carbonate precipitation. Precipitation of carbonate is episodic, which is likely the result of internal forcing. Blocking and subsequent reorganisation of the seep plumbing system lead to abandonment of old seeps and formation of new sites

    Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin

    No full text
    The central Chilean subduction zone between 35°S and 37°S was investigated in order to identify, document and possibly understand fluid flow and fluid venting within the forearc region. Several areas were mapped using multibeam bathymetry and backscatter, high-resolution sidescan sonar, chirp subbottom profiling and reflection seismic data. On a subsequent cruise ground-truthing observations were made using a video sled. In general, this dataset shows surprisingly little evidence of fluid venting along the mid-slope region, in contrast to other subduction zones such as Central America and New Zealand. There were abundant indications of active and predominantly fossil fluid venting along the upper slope between 36.5°S and 36.8°S at the seaward margin of an intraslope basin. Here, backscatter anomalies suggest widespread authigenic carbonate deposits, likely the result of methane-rich fluid expulsion. There is unpublished evidence that these fluids are of biogenic origin and generated within the slope sediments, similar to other accretionary margins but in contrast to the erosional margin off Central America, where fluids have geochemical signals indicating an origin from the subducting plate
    corecore