11 research outputs found

    Citrulline supplementation improves organ perfusion and arginine availability under conditions with enhanced arginase activity

    Get PDF
    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues

    Spectroscopic and biochemical correlations during the course of human lens aging

    Get PDF
    BACKGROUND: With age, the human lens accumulates variety of substances that absorbs and fluorescence, which explains the color of yellow, brunescent and nigrescent cataract in terms of aging. The aim of this study was to assess lens fluorophores with properties comparable to those of advanced glycated end products (AGEs) in relation to age in human lenses. These fluorescent compounds are believed to be involved in the development of cataract. METHODS: Spectroscopic (UV-Vis-NIR) and fluorescence photography (CCD-Digital based image analysis) studies were carried out in randomly selected intact human lenses (2–85 years). AGE-like fluorophores were also measured in water soluble and insoluble (alkali soluble) fractions of human lenses (20–80 years). RESULTS: Our experimental findings suggest that there was a progressive shift in the absorbance characteristic of intact lens in the range of λ(210 nm)-λ(470 nm). A relative increase in the absorptivity at λ((511–520 nm)), with age, was also observed. In addition, the ratio of absorptivity at λ((511–520 nm)) versus the maximum absorbance recorded at blue-end cut-off (210–470 nm) was also found to increase, with age. The fluorescent intensity in the intact lens at both UV-B (λ(Ex312 nm)) and UV-A (λ(Ex365 nm)) were found to be positively correlated (r(2 )= 0.91 & 0.94, respectively; Confidence interval 95%) upto 50 years of age. In addition, a concomitant changes in AGE- like fluorophores were also observed in the processed lens samples (soluble and insoluble fractions) along the age. A significant increase in the concentration of AGE- like fluorophores, both in intact and processed lens was observed during the period of 40 – 50 years. CONCLUSION: Based on the present investigation, it was concluded that significant changes do occur in the AGE-like fluorophores of human lenses during the period of 40–50 years

    Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level

    Get PDF
    The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of “free” Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their “free” counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age

    A randomized phase 3 study of tipifarnib compared to best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia (AML) in patients 70 years or older.

    No full text
    This phase 3, multicenter, open-label study evaluated the efficacy and safety of tipifarnib compared with best supportive care (BSC), including hydroxyurea, as first-line therapy in elderly patients (>or=70 years) with newly diagnosed, de novo, or secondary acute myeloid leukemia. A total of 457 patients were enrolled with 24% 80 years of age or older. Tipifarnib 600 mg orally twice a day was administered for the first 21 consecutive days, in 28-day cycles. The primary endpoint was overall survival. The median survival was 107 days for the tipifarnib arm and 109 days for the BSC arm. The hazard ratio (tipifarnib vs BSC) for overall survival was 1.02 (P value by stratified log-rank test, .843). The complete response rate for tipifarnib in this study (8%) was lower than that observed previously, but with a similar median duration of 8 months. The most frequent grade 3 or 4 adverse events were cytopenias in both arms, slightly more infections (39% vs 33%), and febrile neutropenia (16% vs 10%) seen in the tipifarnib arm. The results of this randomized study showed that tipifarnib treatment did not result in an increased survival compared with BSC, including hydroxyurea. This trial was registered at www.clinicaltrials.gov as #NCT00093990

    Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose

    Get PDF
    Glutathione S-transferases (GSTs) metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology
    corecore