80 research outputs found

    Strobilurin Effects on Nitrogen Use Efficiency for the Yield and Protein in Durum Wheat Grown under Rainfed Mediterranean Conditions

    Get PDF
    In wheat, the increase in nitrogen use efficiency (NUE) and optimization of the nitrogen doses to be used are both very important aspects for improving sustainable and productive agriculture. The aim of this study was to investigate, under rainfed Mediterranean conditions, the influence of strobilurin treatment and N fertilization on durum wheat N use efficiency for yield (NUEy) and protein (NUEp) and on the contribution of their components, nitrogen uptake efficiency (UPE) and nitrogen utilization efficiency (NUtE). Two durum wheat cultivars (Saragolla and Sfinge) were grown for two years in field conditions under five nitrogen treatments (60 kg ha−1 N60; 90 and 120 kg ha−1 given two and three times; N90, N90T3, N120 and N120T3) comparing a control without strobilurin treatment (ST0) and one application of strobilurin (STaz). In Sfinge, STaz caused a decrease in UPE and NUEp and an increase in NUtE and NUEy. In Saragolla, the opposite behavior was observed. Moreover, strobilurin positively affected the contribution of UPE and negatively that of NUtE to NUEy only in Saragolla. Furthermore, strobilurin determined higher NUEy and NUEp values under most of the N treatments adopted in the drier year. With this study, we supported the hypothesis that in Mediterranean conditions, the possibility of reducing N rate application from 120 to 90 kg ha−1 with a strobilurin-based treatment, even in the absence of fungal diseases, could represent a useful agronomic strategy for durum wheat grown under drought conditions as those predicted under the ongoing climate change

    Analysis of gluten proteins composition during grain filling in two durum wheat cultivars submitted to two water regimes

    Get PDF
    Durum wheat ( Triticum turgidum L. subsp . durum) is one of the major crops in the Mediterranean basin, where water stress often occurs during grain filling which represents a critical stage for the synthesis and accumulation of storage proteins (gliadins and glutenins). The aim of the study is to evaluate, by two-dimensional gel electrophoresis (2DE SDS-PAGE), the storage proteins composition of two durum wheat cultivars (Ciccio and Svevo) cultivated in a growth chamber under two different water regimes (control and water deficit). At milk stage and physiological maturity, gluten proteins have been extracted and separated by 2DE SDS-PAGE. The analysis of the gels was performed by the software ImageMaster 2D Platinum (Amersham). The results showed differences in protein expression within the different gel regions between water regimes and cultivars; under water deficit the rate of protein accumulation was faster for all the protein regions, either at milk and physiological stage. Protein accumulation within high molecular weight (H) region resulted faster in Ciccio than in Svevo mainly in the control treatment. In the low molecular weight region between 48 and 35 kDa (L 48-35), the cultivar Ciccio showed a higher protein expression than Svevo. Furthermore under water deficit a marked increase in H region volume and a decrease in the L 48-35 region was observed only for Svevo; instead in Ciccio no change was observed showing this cultivar a greater stability on changing water regime. Further studies by the use of mass spectrometry are necessary to identify specific peptides relative to drought stress during grain filling as well as to investigate the relationships with technological quality

    Effect of Arbuscular Mycorrhizal Fungal Seed Coating on Grain Protein and Mineral Composition of Old and Modern Bread Wheat Genotypes

    Get PDF
    The effect of arbuscular mycorrhizal fungi (AMF) on yield and quality was investigated on a set of seven bread wheat genotypes with varying years of release, including five old genotypes and two modern varieties. A two-year field trial was conducted in central Italy under rainfed con- ditions. The effect of AM fungal seed coating was proved by assessing the AM fungal root colonization and studied on agronomic and quality traits, and in particular on gluten-forming proteins and grain mineral composition. AMF seed coating led to a general yield improvement in old geno- types (+24%). Concerning the effects on grain quality, while modern genotypes showed an increase in protein content (+16%), in the old ones an improvement of gluten quality was observed, with an increased proportion of HMW-GS from +17% to +92%. The gluten index results were mostly influenced by HMW-GS allelic configuration and amount, showing a significant correlation with gliadin- to-glutenin ratio and HMW-GS to LMW-GS. Concerning mineral uptake, AM fungal treatment de- termined a general increase in P content, which was more marked in the modern group (+44%). Furthermore, AMF significantly increased mean Fe concentration in Verna (+53%) and Bologna (+45%). Finally, phytate content did not increase with AMF, without affecting mineral bioavailability

    Irrigation with treated municipal wastewater on artichoke crop: assessment of soil and yield heavy metal content and human risk

    Get PDF
    Industrial and municipal wastewaters are often used for irrigating agricultural fields in arid and semi-arid countries, representing the most attractive option to alleviate pressure on fresh-water resources. However, the wastewater may contain various potentially toxic elements and organic matters with highly harmful effects on human and animal health. During two growing seasons of globe artichoke, the effects of irrigation with secondary (SWW) and tertiary (TWW) municipal wastewater on heavy metal soil and plant content were evaluated together with the consequent human risk from artichoke head consumption. The heavy metal contents (i.e., Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn, and Mn) of the irrigation water, soil, plant and yield were analyzed. Total and extractable heavy metals were quantified to determine the bioaccumulation factors, and the health risks to adults and children were determined according to hazard indices. The heavy metal contents of the artichoke heads harvested after SWW and TWW irrigation were lower than the international threshold values and low bioaccumulation factors suggested that these heavy metals did not accumulate in the edible part of the artichoke crop. The hazard indices based on the consumption of the artichoke heads remained <1.0 for both adults and children, thus indicating that the health risks involving the different heavy metals are not significant

    combined effects of deficit irrigation and strobilurin application on gas exchange yield and water use efficiency in tomato solanum lycopersicum l

    Get PDF
    Abstract Water is the major factor limiting plant productivity in many regions of the world. The aim of this study was to evaluate the combined effect of deficit irrigation (restitution of 100%, 50% and 0% of plant consumption: WR100, WR50 and WR0, respectively) and strobilurin treatment (no agrochemical added vs azoxystrobin treatment) in two tomato genotypes, IT-22/025, a wild-type plant, and Ikram, a commercial hybrid. Water use efficiency (WUE), physiological, yield and quality parameters and the expression of ERD15, a gene involved in abiotic stress response were evaluated. The two genotypes showed a different behaviour in response to water stress. Stomatal conductance decrease from WR100 to WR50 was in mean 27.5% for IT-22/025 and 44.5% for Ikram. Moreover, in Ikram, water stress decreased transpiration more than assimilation rate, while the opposite occurred in IT-22/025. The ERD15 expression decrease from WR100 to WR50 was higher for IT-22/025. These effects corresponded to higher total fresh fruit yield and WUE for IT-22/025. Strobilurin determined lower stomata conductance, maintaining higher assimilation rate, leading to an increase in WUE in WR0. Finally, strobilurin caused an increase in ERD15 expression only in IT-22/025. This study underlines the possibility to reduce the water used in tomato crop, maintaining acceptable yield and quality, by using agronomic and genetic strategy

    identifying the most promising agronomic adaptation strategies for the tomato growing systems in southern italy via simulation modeling

    Get PDF
    Abstract The main cultivation area of the Italian processing tomato is the Southern Capitanata plain. Here, the hardest agronomic challenge is the optimization of the irrigation water use, which is often inefficiently performed by farmers, who tend to over-irrigate. This could become unsustainable in the next years, given the negative impacts of climatic changes on groundwater availability and heat stress intensification. The aim of the study was to identify the most promising agronomic strategies to optimize tomato yield and water use in Capitanata, through a modeling study relying on an extensive dataset for model calibration and evaluation (22 data sets in 2005–2018). The TOMGRO simulation model was adapted to open-field growing conditions and was coupled with a soil model to reproduce the impact of water stress on yield and fruit quality. The new model, TomGro_field, was applied on the tomato cultivation area in Capitanata at 5 × 5 km spatial resolution using an ensemble of future climatic scenarios, resulting from the combination of four General Circulation Models, two extreme Representative Concentration Pathways and five 10-years time frames (2030–2070). Our results showed an overall negative impact of climate change on tomato yields (average decrease = 5–10%), which could be reversed by i) the implementation of deficit irrigation strategies based on the restitution of 60–70% of the crop evapotranspiration, ii) the adoption of varieties with longer cycle and iii) the anticipation of 1–2 weeks in transplanting dates. The corresponding irrigation amounts applied are around 360 mm, thus reinforcing that a rational water management could be realized. Our study provides agronomic indications to tomato growers and lays the basis for a bio-economic analysis to support policy makers in charge of promoting the sustainability of the tomato growing systems

    Temporal and design approaches and yield-weather relationships

    Get PDF
    The climate changes and the weather events affect agricultural production and farmers’ income. Several strategies may help improving the resilience of farms to climate change, and particular mention should be done to the weather index-based crop insurance schemes, as they rely on the yield-weather relationship. A vast majority of studies investigate the limitation of the weather index insurance, due to the complex relationships linking weather events and yields and the difficulty to capture them with an index (i.e., the basis risk). The literature has not devoted sufficient attention to compare different specifications within the same statistical model in yield-weather estimation. Our study, conducted on durum wheat in Italy, shows how the identification (and design) of the phenological stages (i.e., temporal specifications) may help capturing or depicting the yield-weather relationships. The negative effects of the low temperatures, especially during the early stages of durum wheat, is remarkable. Our findings contribute to the debate on the design of triggers in weather indexes (e.g., for minimum temperatures), stimulating new research directions to assist stakeholders interested in planning agricultural risk management interventions

    Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity

    Get PDF
    This study investigated the qualitative characteristics of several edible wild herbaceous species, including those most consumed in Foggia Province (southern Italy). Analysis of qualitative characteristics was performed for the edible parts of 11 wild species (Beta vulgaris L., Foeniculum vulgare Miller, Centaurea solstitialis L., Cichorium intybus L., Scolymus hispanicus L., Sonchus oleraceus L., Borago officinalis L., Diplotaxis erucoides L., Diplotaxis tenuifolia (L.) DC, Sinapis arvensis L., Portulaca oleracea L.) and three cultivated species (C. intybus, B. officinalis, D. tenuifolia). The plants were collected from areas in the Foggia countryside, and the edible part of each species was analysed for dry matter, protein, cation and anion contents as well as total phenols and antioxidant activities. Among the cations, calcium was the most differentiated among species, ranging 784 mg kg-1 fresh weight (Fw) for B. vulgaris to 5886 mg kg-1 Fw for S. hispanicus. The nitrate contents were also highly variable, from 75 mg kg-1 Fw for C. intybus to 3874 mg kg-1 Fw for D. tenuifolia. Total polyphenols ranged from 1054 mg GAE mg kg-1 Fw for C. solstitialis to 3664 mg GAE mg kg-1 Fw for S. arvensis. Antioxidant activities ranged from 839 mg TE kg-1 Fw for B. vulgaris to 5658 mg TE kg-1 Fw for C. intybus. Significant differences were also noted between wild and cultivated plants in the qualitative parameters. Total polyphenols and antioxidant activity were higher in wild C. intybus and B. officinalis than in their cultivated counterparts. Multivariate analysis (cluster analysis and linear discriminant analysis) allowed integration of the ANOVA data to determine the qualitative characteristics of the wild species that contribute most to group differences. The results of the present study aims at improve the current knowledges about edible wild species as vegetable sources in the Mediterranean diet

    Uptake and accumulation of emerging contaminants in processing tomato irrigated with tertiary treated wastewater effluent: a pilot-scale study

    Get PDF
    The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P &lt; .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients
    • …
    corecore