22 research outputs found

    Real and complex connections for canonical gravity

    Full text link
    Both real and complex connections have been used for canonical gravity: the complex connection has SL(2,C) as gauge group, while the real connection has SU(2) as gauge group. We show that there is an arbitrary parameter β\beta which enters in the definition of the real connection, in the Poisson brackets, and therefore in the scale of the discrete spectra one finds for areas and volumes in the corresponding quantum theory. A value for β\beta could be could be singled out in the quantum theory by the Hamiltonian constraint, or by the rotation to the complex Ashtekar connection.Comment: 8 pages, RevTeX, no figure

    General Relativity versus Dark Matter for rotating galaxies

    Full text link
    A very general class of axially-symmetric metrics in general relativity (GR) that includes rotations is used to discuss the dynamics of rotationally-supported galaxies. The exact vacuum solutions of the Einstein equations for this extended Weyl class of metrics allow us to deduce rigorously the following: (i) GR rotational velocity always exceeds the Newtonian velocity (thanks to Lenz's law in GR); (ii) A non-vanishing intrinsic angular momentum (JJ) for a galaxy demands the asymptotic constancy of the Weyl (vectorial) length parameter (aa) -a behavior identical to that found for the Kerr metric; (iii) Asymptotic constancy of the same parameter aa also demands a plateau in the rotational velocity. Unlike the Kerr metric, the extended Weyl metric can and has been continued within the galaxy and it has been shown under what conditions Gau\ss\ \&\ Amp\'ere laws emerge along with Ludwig's extended GEM theory with its attendant non-linear rate equations for the velocity field. Better estimates (than that from the Newtonian theory) for the escape velocity of the Sun and a reasonable rotation curve \&\ JJ for our own galaxy has been presented.Comment: 22 pages, 4 figures; v2, minor corrections, e-mails adde

    Duality in Fuzzy Sigma Models

    Full text link
    Nonlinear `sigma' models in two dimensions have BPS solitons which are solutions of self- and anti-self-duality constraints. In this paper, we find their analogues for fuzzy sigma models on fuzzy spheres which were treated in detail by us in earlier work. We show that fuzzy BPS solitons are quantized versions of `Bott projectors', and construct them explicitly. Their supersymmetric versions follow from the work of S. Kurkcuoglu.Comment: Latex, 9 pages; misprints correcte

    Regge calculus and Ashtekar variables

    Full text link
    Spacetime discretized in simplexes, as proposed in the pioneer work of Regge, is described in terms of selfdual variables. In particular, we elucidate the "kinematic" structure of the initial value problem, in which 3--space is divided into flat tetrahedra, paying particular attention to the role played by the reality condition for the Ashtekar variables. An attempt is made to write down the vector and scalar constraints of the theory in a simple and potentially useful way.Comment: 10 pages, uses harvmac. DFUPG 83/9

    Dirac Operators on Coset Spaces

    Get PDF
    The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin_c-structures. When a manifold is spin_c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors. Likewise, for manifolds like SU(3)/SO(3), which are not even spin_c, we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S^n=SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al..Comment: section on Riemannian structure improved, references adde

    Complete loop quantization of a dimension 1+2 Lorentzian gravity theory

    Full text link
    De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.Comment: Loops11 - Madrid - 2011 (4 pages, Latex
    corecore