15,044 research outputs found
Spin-Exchange Interaction in ZnO-based Quantum Wells
Wurtzitic ZnO/(Zn,Mg)O quantum wells grown along the (0001) direction permit
unprecedented tunability of the short-range spin exchange interaction. In the
context of large exciton binding energies and electron-hole exchange
interaction in ZnO, this tunability results from the competition between
quantum confinement and giant quantum confined Stark effect. By using
time-resolved photoluminescence we identify, for well widths under 3 nm, the
redistribution of oscillator strengths between the A and B excitonic
transitions, due to the enhancement of the exchange interaction. Conversely,
for wider wells, the redistribution is cancelled by the dominant effect of
internal electric fields, which dramatically reduce the exchange energy.Comment: 14 pages, 3 figure
Carbon burning in intermediate mass primordial stars
The evolution of a zero metallicity 9 M_s star is computed, analyzed and
compared with that of a solar metallicity star of identical ZAMS mass. Our
computations range from the main sequence until the formation of a massive
oxygen-neon white dwarf. Special attention has been payed to carbon burning in
conditions of partial degeneracy as well as to the subsequent thermally pulsing
Super-AGB phase. The latter develops in a fashion very similar to that of a
solar metallicity 9 M_s star, as a consequence of the significant enrichment in
metals of the stellar envelope that ensues due to the so-called third dredge-up
episode. The abundances in mass of the main isotopes in the final ONe core
resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28
and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly
composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4}
M_sComment: 11 pages, 11 figures, accepted for publication in A&
Water-ice driven activity on Main-Belt Comet P/2010 A2 (LINEAR) ?
The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with
several telescopes at the at the Observatorio del Roque de los Muchachos on La
Palma, Spain. Application of an inverse dust tail Monte Carlo method to the
images of the dust ejecta from the object indicates that a sustained, likely
water-ice driven, activity over some eight months is the mechanism responsible
for the formation of the observed tail. The total amount of dust released is
estimated to be 5E7 kg, which represents about 0.3% of the nucleus mass. While
the event could have been triggered by a collision, this cannot be decided from
the currently available data.Comment: Accepted for ApJ Letter
A three-dimensional view of the remnant of Nova Persei 1901 (GK Per)
We present a kinematical study of the optical ejecta of GK Per. It is based
on proper motions measurements of 282 knots from ~20 images spanning 25 years.
Doppler-shifts are also computed for 217 knots. The combination of proper
motions and radial velocities allows a unique 3-D view of the ejecta to be
obtained. The main results are: (1) the outflow is a thick shell in which knots
expand with a significant range of velocities, mostly between 600 and 1000
km/s; (2) kinematical ages indicate that knots have suffered only a modest
deceleration since their ejection a century ago; (3) no evidence for anisotropy
in the expansion rate is found; (4) velocity vectors are generally aligned
along the radial direction but a symmetric pattern of non-radial velocities is
also observed at specific directions; (5) the total Halpha+[NII] flux has been
linearly decreasing at a rate of 2.6 % per year in the last decade. The Eastern
nebular side is fading at a slower rate than the Western one. Some of the knots
displayed a rapid change of brightness during the 2004-2011 period. Over a
longer timescale, a progressive circularization and homogenization of the
nebula is taking place; (6) a kinematic distance of 400+-30 pc is determined.
These results raise some problems to the previous interpretations of the
evolution of GK Per. In particular, the idea of a strong interaction of the
outflow with the surrounding medium in the Southwest quadrant is not supported
by our data.Comment: Accepted for publication in The Astrophysical Journal (19 pages, 17
figures). Higher resolution version of this article (2.5 MB) is available at
http://www.aai.ee/~sinope/ApJ89291_liimets.pd
Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production
Our main goals are to get a deeper insight into the evolution and final fates
of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to
investigate their C, N, and O yields. Using the Monash University Stellar
Evolution code we computed and analysed the evolution of stars of metallicity Z
= 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the
late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our
model stars experience a strong C, N, and O envelope enrichment either due to
the second dredge-up, the dredge-out phenomenon, or the third dredge-up early
during the TP-(S)AGB phase. Their late evolution is therefore similar to that
of higher metallicity objects. When using a standard prescription for the mass
loss rates during the TP-(S)AGB phase, the computed stars lose most of their
envelopes before their cores reach the Chandrasekhar mass, so our standard
models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we
find that the reduction of only one order of magnitude in the mass-loss rates,
which are particularly uncertain at this metallicity, would prevent the
complete ejection of the envelope, allowing the stars to either explode as an
SNI1/2 or become an electron-capture SN. Our calculations stop due to an
instability near the base of the convective envelope that hampers further
convergence and leaves remnant envelope masses between 0.25 M_sun for our 4
M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N,
and O yields derived from our full calculations and computed under two
different assumptions, namely, that the instability causes a practically
instant loss of the remnant envelope or that the stars recover and proceed with
further thermal pulses. Our results have implications for the early chemical
evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
- …