1,364 research outputs found

    Developmental motor profile in preschool children with primary stereotypic movement disorder

    Get PDF
    Aim. Different neuropsychological dysfunctions have been described in children with primary Stereotypic Movement Disorder (SMD), mainly attention or motor coordination problems. Up to now with no study has evaluated psychomotor functions in preschoolers primary SMD. The aim of this observational study was to gather information on the motor profiles of SMD patients in this age range in comparison with typically developing children. Patients and Methods. Twenty-six children (four girls) aged 36 to 76 months (mean= 53 ±10) with primary SMD were assessed by a structured evaluation including the Movement Assessment Battery for Children-Second Edition (MABC-2), the Beery-Buktenica Developmental test of Visual-Motor Integration (VMI), the Repetitive Behaviour Scale-Revised (RBS-R), the Motor Severity Stereotypy Scale (MSSS), and the Child Behaviour Checklist (CBCL). The diagnoses of Intellectual Disability or Autism Spectrum Disorder were exclusion criteria from the study. A comparison group of twenty-seven (four girls) typically developing children without stereotypies aged 36 to 59 months (mean= 48 ±7) was also examined. Results. The MABC-2 total score was lower than 15th percentile in fifteen children with SMD (58%); the worst performances were observed in Balance and Manual Dexterity subtests. The motor coordination score of VMI was lower than 15th percentile in ten children (38%). The majority of the children with low scores at MABC-2 also had low scores at the motor coordination subscale of VMI. MABC-2 standard scores of the clinical group were significantly lower than those of controls on MABC-2 Total, Balance, and Ball Skills subtests. Conclusion. The finding of widespread dysfunction of gross and fine motor abilities in preschoolers with primary SMD seems to delineate a peculiar phenotype and could provide new approaches to the management of this neurodevelopment disorder

    The BLAST Survey of the Vela Molecular Cloud: Dynamical Properties of the Dense Cores in Vela-D

    Full text link
    The Vela-D region, according to the nomenclature given by Murphy & May (1991), of the star forming complex known as the Vela Molecular Ridge (VMR), has been recently analyzed in details by Olmi et al. (2009), who studied the physical properties of 141 pre- and proto-stellar cold dust cores, detected by the ``Balloon-borne Large-Aperture Submillimeter Telescope'' (BLAST) during a much larger (55 sq. degree) Galactic Plane survey encompassing the whole VMR. This survey's primary goal was to identify the coldest, dense dust cores possibly associated with the earliest phases of star formation. In this work, the dynamical state of the Vela-D cores is analyzed. Comparison to dynamical masses of a sub-sample of the Vela-D cores estimated from the 13CO survey of Elia et al. (2007), is complicated by the fact that the 13CO linewidths are likely to trace the lower density intercore material, in addition to the dense gas associated with the compact cores observed by BLAST. In fact, the total internal pressure of these cores, if estimated using the 13CO linewidths, appears to be higher than the cloud ambient pressure. If this were the case, then self-gravity and surface pressure would be insufficient to bind these cores and an additional source of external confinement (e.g., magnetic field pressure) would be required. However, if one attempts to scale down the 13CO linewidths, according to the observations of high-density tracers in a small sample of sources, then most proto-stellar cores would result effectively gravitationally bound.Comment: This paper has 12 pages and 6 figures. Accepted for publication by the Astrophysical Journal on July 19, 201

    Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement

    Get PDF
    Phase separation of a polymer solution exhibits a peculiar behavior when induced in a nanoconfinement. The energetic constraints introduce additional interactions between the polymer segments that reduce the number of available configurations. In our work, this effect is exploited in a one-step strategy called nanoconfined-Thermally Induced Phase Separation (nc-TIPS) to promote the crystallization of polymer chains into nanocapsular structures of controlled size and shell thickness. This is accomplished by performing a quench step of a low-concentrated PLLA-dioxane-water solution included in emulsions of mean droplet size <500 nm acting as nanodomains. The control of nanoconfinement conditions enables not only the production of nanocapsules with a minimum mean particle diameter of 70 nm but also the tunability of shell thickness and its crystallinity degree. The specific properties of the developed nanocapsular architectures have important implications on release mechanism and loading capability of hydrophilic and lipophilic payload compounds

    Spitzer spectral line mapping of protostellar outflows: II H2 emission in L1157

    Full text link
    We present an analysis of Spitzer-IRS spectroscopic maps of the L1157 protostellar outflow in the H2 pure-rotational lines from S(0) to S(7). The aim of this work is to derive the physical conditions pertaining to the warm molecular gas and study their variations within the flow. The mid-IR H2 emission follows the morphology of the precessing flow, with peaks correlated with individual CO clumps and H2 2.12{\mu}m ro-vibrational emission. More diffuse emission delineating the CO cavities is detected only in the low-laying transitions, with J(lower) less or equal to 2. The H2 line images have been used to construct 2D maps of N(H2), H2 ortho-to-para ratio and temperature spectral index beta, in the assumption of a gas temperature stratification where the H2 column density varies as T^(beta). Variations of these parameters are observed along the flow. In particular, the ortho-to-para ratio ranges from 0.6 to 2.8, highlighting the presence of regions subject to recent shocks where the ortho-to-para ratio has not had time yet to reach the equilibrium value. Near-IR spectroscopic data on ro-vibrational H2 emission have been combined with the mid-IR data and used to derive additional shock parameters in the brightest blue- and red-shifted emission knots. A high abundance of atomic hydrogen (H/H2 about 0.1-0.3) is implied by the observed H2 column densities, assuming n(H2) values as derived by independent SiO observations. The presence of a high fraction of atomic hydrogen, indicates that a partially-dissociative shock component should be considered for the H2 excitation in these localized regions. However, planar shock models, either of C- or J-type, are not able to consistently reproduce all the physical parameters derived from our analysis of the H2 emission. Globally, H2 emission contributes to about 50% of the total shock radiated energy in the L1157 outflow.Comment: 31 pages, 9 figure, Accepted for publication on Ap

    Imaging Findings of Cerebral Amyloid Angiopathy, Aβ-Related Angiitis (ABRA), and Cerebral Amyloid Angiopathy-Related Inflammation: A Single-Institution 25-Year Experience

    Get PDF
    Vascular inflammation is present in a subset of patients with cerebral amyloid angiopathy (CAA) and has a major influence in determining the disease manifestations. Radiological characterization of this subset is particularly important to achieve early recognition and treatment. We conducted this study to investigate the role of imaging in differentiating CAA with and without inflammation. We reviewed neuroimaging findings for 54 patients seen at Mayo Clinic over 25 years with pathological evidence of CAA and with available neuroimaging at the time of diagnosis. Clinical data were also recorded. Patients were grouped into CAA alone (no vascular inflammation), Aβ-related angiitis or ABRA (angiodestructive inflammation), and CAA-related inflammation or CAA-RI (perivascular inflammation). Imaging findings at presentation were compared among patient subgroups. Radiological features supporting a diagnosis of ABRA or CAA-RI were identified. Radiologic findings at diagnosis were available in 27 patients with CAA without inflammation, 22 with ABRA, and 5 with CAA-RI. On MRI, leptomeningeal disease alone or with infiltrative white matter was significantly more frequent at presentation in patients with ABRA or CAA-RI compared with those with CAA (29.6% vs. 3.7%, P = 0.02; and 40.7% vs. 3.7%, P = 0.002, respectively), whereas lobar hemorrhage was more frequent in patients with CAA (62.3% vs. 7.4%, P = 0.0001). Overall, leptomeningeal involvement at presentation was present in 70.4% of patients with ABRA or CAA-RI and in only 7.4% of patients with CAA (P = 0.0001). The sensitivity and specificity of leptomeningeal enhancement to identify patients with ABRA or CAA-RI were 70.4% and 92.6%, respectively, whereas the positive likelihood ratio (LR) was 9.5. The sensitivity and specificity of intracerebral hemorrhage to identify patients with CAA were 62.9% and 92.6%, respectively, whereas the positive LR was 8.5. Microbleeds were found in 70.4% of patients with inflammatory CAA at presentation. In conclusion, leptomeningeal enhancement and lobar hemorrhage at presentation may enable differentiation between CAA with and without inflammation. The identification at initial MRI of diffuse cortical-subcortical microbleeds in elderly patients presenting with infiltrative white matter process or prominent leptomeningeal enhancement is highly suggestive of vascular inflammatory CAA
    • …
    corecore