23 research outputs found

    The Influence of Spin-Labeled Fluorene Compounds on the Assembly and Toxicity of the Aβ Peptide

    Get PDF
    The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer's disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species. Methodology/Principal Findings To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species. Conclusions Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species

    Magnetic susceptibility anisotropy of myocardium imaged by cardiovascular magnetic resonance reflects the anisotropy of myocardial filament α-helix polypeptide bonds

    Get PDF
    BACKGROUND: A key component of evaluating myocardial tissue function is the assessment of myofiber organization and structure. Studies suggest that striated muscle fibers are magnetically anisotropic, which, if measurable in the heart, may provide a tool to assess myocardial microstructure and function. METHODS: To determine whether this weak anisotropy is observable and spatially quantifiable with cardiovascular magnetic resonance (CMR), both gradient-echo and diffusion-weighted data were collected from intact mouse heart specimens at 9.4 Tesla. Susceptibility anisotropy was experimentally calculated using a voxelwise analysis of myocardial tissue susceptibility as a function of myofiber angle. A myocardial tissue simulation was developed to evaluate the role of the known diamagnetic anisotropy of the peptide bond in the observed susceptibility contrast. RESULTS: The CMR data revealed that myocardial tissue fibers that were parallel and perpendicular to the magnetic field direction appeared relatively paramagnetic and diamagnetic, respectively. A linear relationship was found between the magnetic susceptibility of the myocardial tissue and the squared sine of the myofiber angle with respect to the field direction. The multi-filament model simulation yielded susceptibility anisotropy values that reflected those found in the experimental data, and were consistent that this anisotropy decreased as the echo time increased. CONCLUSIONS: Though other sources of susceptibility anisotropy in myocardium may exist, the arrangement of peptide bonds in the myofilaments is a significant, and likely the most dominant source of susceptibility anisotropy. This anisotropy can be further exploited to probe the integrity and organization of myofibers in both healthy and diseased heart tissue

    Biomembranes

    No full text
    corecore