4 research outputs found

    The riverine bioreactor: an integrative perspective on biological decomposition of organic matter across riverine habitats

    Get PDF
    Riverine ecosystems can be conceptualized as ‘bioreactors’ (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems

    Tributaries as richness source for Oligochaeta assemblage (Annelida) of Neotropical dammed river

    No full text
    Tributaries may serve as richness source for the river main channel and the zoobenthos community is a good tool to verify this kind of pattern. In this study, we aimed to characterize the benthic invertebrate assemblage in three tributaries associated to the Paraná River main channel, focusing in Oligochaeta community. We hypothesized that (i) in tributaries, Oligochaeta are richer than the main river (Paraná River) and (ii) dammed tributary (Paranapanema River) is poorly diverse than the others. Samples were conducted in Paranapanema, Baía and Ivinhema tributaries using a modified Petersen grab along three transects (samples conducted inside the tributary, in the mouth of each tributary and inside Paraná River). To analyze (i) the difference between the richness and density among the tributaries and the Paraná River and (ii) effect of each tributary transect on the Oligochaeta richness we used a nonparametric Kruskal-Wallis test. Changes in environmental variables and in richness and composition of Oligochaeta were summarized by Canonic Correspondence Analysis. It was registered 21 different benthic invertebrates taxa, being Oligochaeta assemblage with the highest density. Within Oligochaeta, Narapa bonettoi was the most abundant species, followed by Haplotaxis aedochaeta and Paranadrilus descolei. In our results we refused both hypotheses, because we did not found significant differences for richness and density between the tributaries and the main river, and also no difference between the three transects of each tributary were found. However, the tributaries less influenced by damming, especially the Baía recorded high richness. This corroborates their importance to diversity in the floodplain and the species of Oligochaeta reflect the peculiar characteristics of habitats within each tributaries
    corecore