70 research outputs found

    Effects of two common polymorphisms in the 3' untranslated regions of estrogen receptor ÎČ on mRNA stability and translatability

    Get PDF
    Estrogen signaling is mediated by estrogen receptors (ERs), ERα and ERÎČ. Aberrant estrogen signaling is involved in breast cancer development. ERα is one of the key biomarkers for diagnosis and treatment of breast cancer. Unlike ERα, ERÎČ is still not introduced as a marker for diagnosis and established as a target of therapy. Numerous studies suggest antiproliferative effects of ERÎČ, however its role remains to be fully explored. Albeit important, ERα is not a perfect marker, and some aspects of ERα function are still unclear. This thesis aims to characterize distinct molecular facets of ER action relevant for breast cancer and provide valuable information for ER-based diagnosis and treatment design. In PAPER I, we analyzed the functionality of two common single nucleotide polymorphisms in the 3’ untranslated regions of ERÎČ, rs4986938 and rs928554, which have been extensively investigated for association with various diseases. A significant difference in allelic expression was observed for rs4986938 in breast tumor samples from heterozygous individuals. However, no difference in mRNA stability or translatability between the alleles was observed. In PAPER II, we provided a more comprehensive understanding of ERÎČ function independent of ERα. A global gene expression analysis in a HEK293/ERÎČ cell model identified a set of ERÎČ-regulated genes. Gene Ontology (GO) analysis showed that they are involved in cell-cell signaling, morphogenesis and cell proliferation. Moreover, ERÎČ expression resulted in a significant decrease in cell proliferation. In PAPER III, using the human breast cancer MCF-7/ERÎČ cell model, we demonstrated, for the first time, the binding of ERα/ÎČ heterodimers to various DNA-binding regions in intact chromatin. In PAPER IV, we investigated a potential cross-talk between estrogen signaling and DNA methylation by identifying their common target genes in MCF-7 cells. Gene expression profiling identified around 150 genes regulated by both 17ÎČ- estradiol (E2) and a hypomethylating agent 5-aza-2’-deoxycytidine. Based on GO analysis, CpG island prediction analysis and previously reported ER binding regions, we selected six genes for further analysis. We identified BTG3 and FHL2 as direct target genes of both pathways. However, our data did not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes. In PAPER V, we further explored the interactions between estrogen signaling and DNA methylation, with focus on DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). E2, via ERα, up-regulated DNMT1 and down-regulated DNMT3a and DNMT3b mRNA expression. Furthermore, DNMT3b interacted with ERα. siRNA-mediated DNMT3b depletion increased the expression of two genes, CDKN1A and FHL2. We proposed that the molecular mechanism underlying regulation of FHL2 and CDKN1A gene expression involves interplay of DNMT3b and ERα. In conclusion, the studies presented in this thesis contribute to the knowledge of ERÎČ function, and give additional insight into the cross-talk mechanisms underlying ERα signaling with ERÎČ and with DNA methylation pathways

    Thought Problems from Adolescence to Adulthood: Measurement Invariance and Longitudinal Heritability

    Get PDF
    This study investigates the longitudinal heritability in Thought Problems (TP) as measured with ten items from the Adult Self Report (ASR). There were ~9,000 twins, ~2,000 siblings and ~3,000 additional family members who participated in the study and who are registered at the Netherlands Twin Register. First an exploratory factor analysis was conducted to examine the underlying factor structure of the TP-scale. Then the TP-scale was tested for measurement invariance (MI) across age and sex. Next, genetic and environmental influences were modeled on the longitudinal development of TP across three age groups (12–18, 19–27 and 28–59 year olds) based on the twin and sibling relationships in the data. An exploratory factor analysis yielded a one-factor solution, and MI analyses indicated that the same TP-construct is assessed across age and sex. Two additive genetic components influenced TP across age: the first influencing TP throughout all age groups, while the second arises during young adulthood and stays significant throughout adulthood. The additive genetic components explained 37% of the variation across all age groups. The remaining variance (63%) was explained by unique environmental influences. The longitudinal phenotypic correlation between these age groups was entirely explained by the additive genetic components. We conclude that the TP-scale measures a single underlying construct across sex and different ages. These symptoms are significantly influenced by additive genetic factors from adolescence to late adulthood

    Social brain activation during mentalizing in a large autism cohort: the Longitudinal European Autism Project

    Get PDF
    Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition with key deficits in social functioning. It is widely assumed that the biological underpinnings of social impairment are neurofunctional alterations in the “social brain,” a neural circuitry involved in inferring the mental state of a social partner. However, previous evidence comes from small-scale studies and findings have been mixed. We therefore carried out the to-date largest study on neural correlates of mentalizing in ASD. Methods: As part of the Longitudinal European Autism Project, we performed functional magnetic resonance imaging at six European sites in a large, well-powered, and deeply phenotyped sample of individuals with ASD (N = 205) and typically developing (TD) individuals (N = 189) aged 6 to 30 years. We presented an animated shapes task to assess and comprehensively characterize social brain activation during mentalizing. We tested for effects of age, diagnosis, and their association with symptom measures, including a continuous measure of autistic traits. Results: We observed robust effects of task. Within the ASD sample, autistic traits were moderately associated with functional activation in one of the key regions of the social brain, the dorsomedial prefrontal cortex. However, there were no significant effects of diagnosis on task performance and no effects of age and diagnosis on social brain responses. Besides a lack of mean group differences, our data provide no evidence for meaningful differences in the distribution of brain response measures. Extensive control analyses suggest that the lack of case-control differences was not due to a variety of potential confounders. Conclusions: Contrary to prior reports, this large-scale study does not support the assumption that altered social brain activation during mentalizing forms a common neural marker of ASD, at least with the paradigm we employed. Yet, autistic individuals show socio-behavioral deficits. Our work therefore highlights the need to interrogate social brain function with other brain measures, such as connectivity and network-based approaches, using other paradigms, or applying complementary analysis approaches to assess individual differences in this heterogeneous condition

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF
    • 

    corecore