220 research outputs found

    The Architectural Design Rules of Solar Systems based on the New Perspective

    Full text link
    On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exoplanets to test our new perspective on the birth and evolution of solar systems. Till date 403 exoplanets have been discovered in 390 extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf - Star systems and 2 Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exoplanets. All planets are born at inner Clarke Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. This vindicates our basic premise that planets are always born at inner Clarke Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title ,New Perspective on the Birth & Evolution of Solar Systems.Comment: This paper has been reported to Earth,Moon and Planets Journal as MOON-S-09-0007

    The International Mass Loading Service

    Full text link
    The International Mass Loading Service computes four loadings: a) atmospheric pressure loading; b) land water storage loading; c) oceanic tidal loading; and d) non-tidal oceanic loading. The service provides to users the mass loading time series in three forms: 1) pre-computed time series for a list of 849 space geodesy stations; 2) pre-computed time series on the global 1deg x 1deg grid; and 3) on-demand Internet service for a list of stations and a time range specified by the user. The loading displacements are provided for the time period from 1979.01.01 through present, updated on an hourly basis, and have latencies 8-20 hours.Comment: 8 pages, 3 figures, to appear in the Proceedings of the Reference Frames for Applications in Geosciences Simposium, held in Luxemboug in October 201

    The role of chaotic resonances in the solar system

    Get PDF
    Our understanding of the Solar System has been revolutionized over the past decade by the finding that the orbits of the planets are inherently chaotic. In extreme cases, chaotic motions can change the relative positions of the planets around stars, and even eject a planet from a system. Moreover, the spin axis of a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with adverse effects on the climates of otherwise biologically interesting planets. Some of the recently discovered extrasolar planetary systems contain multiple planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure

    Domestic horses (Equus caballus) prefer to approach humans displaying a submissive body posture rather than a dominant body posture

    Get PDF
    Signals of dominance and submissiveness are central to conspecific communication in many species. For domestic animals, sensitivities to these signals in humans may also be beneficial. We presented domestic horses with a free choice between two unfamiliar humans, one adopting a submissive and the other a dominant body posture, with vocal and facial cues absent. Horses had previously been given food rewards by both human demonstrators, adopting neutral postures, to encourage approach behaviour. Across four counterbalanced test trials, horses showed a significant preference for approaching the submissive posture in both the first trial and across subsequent trials, and no individual subject showed an overall preference for dominant postures. There was no significant difference in latency to approach the two postures. This study provides novel evidence that domestic horses may spontaneously discriminate between, and attribute communicative significance to, human body postures of dominance; and further, that familiarity with the signaller is not a requirement for this response. These findings raise interesting questions about the plasticity of social signal perception across the species barrier

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Extending Epigenesis: From Phenotypic Plasticity to the Bio-Cultural Feedback

    Get PDF
    The paper aims at proposing an extended notion of epigenesis acknowledging an actual causal import to the phenotypic dimension for the evolutionary diversification of life forms. Section 1 offers introductory remarks on the issue of epigenesis contrasting it with ancient and modern preformationist views. In Section 2 we propose to intend epigenesis as a process of phenotypic formation and diversification a) dependent on environmental influences, b) independent of changes in the genomic nucleotide sequence, and c) occurring during the whole life span. Then, Section 3 focuses on phenotypic plasticity and offers an overview of basic properties (like robustness, modularity and degeneracy) that allows biological systems to be evolvable – i.e. to have the potentiality of producing phenotypic variation. Successively (Section 4), the emphasis is put on environmentally-induced modification in the regulation of gene expression giving rise to phenotypic variation and diversification. After some brief considerations on the debated issue of epigenetic inheritance (Section 5), the issue of culture (kept in the background of the preceding sections) is considered. The key point is that, in the case of humans and of the evolutionary history of the genus Homo at least, the environment is also, importantly, the cultural environment. Thus, Section 6 argues that a bio-cultural feedback should be acknowledged in the “epigenic” processes leading to phenotypic diversification and innovation in Homo evolution. Finally, Section 7 introduces the notion of “cultural neural reuse”, which refers to phenotypic/neural modifications induced by specific features of the cultural environment that are effective in human cultural evolution without involving genetic changes. Therefore, cultural neural reuse may be regarded as a key instance of the bio-cultural feedback and ultimately of the extended notion of epigenesis proposed in this work

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    Measuring the intelligence of an idealized mechanical knowing agent

    Get PDF
    We define a notion of the intelligence level of an idealized mechanical knowing agent. This is motivated by efforts within artificial intelligence research to define real-number intelligence levels of compli- cated intelligent systems. Our agents are more idealized, which allows us to define a much simpler measure of intelligence level for them. In short, we define the intelligence level of a mechanical knowing agent to be the supremum of the computable ordinals that have codes the agent knows to be codes of computable ordinals. We prove that if one agent knows certain things about another agent, then the former necessarily has a higher intelligence level than the latter. This allows our intelligence no- tion to serve as a stepping stone to obtain results which, by themselves, are not stated in terms of our intelligence notion (results of potential in- terest even to readers totally skeptical that our notion correctly captures intelligence). As an application, we argue that these results comprise evidence against the possibility of intelligence explosion (that is, the no- tion that sufficiently intelligent machines will eventually be capable of designing even more intelligent machines, which can then design even more intelligent machines, and so on)

    How Humans Differ from Other Animals in Their Levels of Morphological Variation

    Get PDF
    Animal species come in many shapes and sizes, as do the individuals and populations that make up each species. To us, humans might seem to show particularly high levels of morphological variation, but perhaps this perception is simply based on enhanced recognition of individual conspecifics relative to individual heterospecifics. We here more objectively ask how humans compare to other animals in terms of body size variation. We quantitatively compare levels of variation in body length (height) and mass within and among 99 human populations and 848 animal populations (210 species). We find that humans show low levels of within-population body height variation in comparison to body length variation in other animals. Humans do not, however, show distinctive levels of within-population body mass variation, nor of among-population body height or mass variation. These results are consistent with the idea that natural and sexual selection have reduced human height variation within populations, while maintaining it among populations. We therefore hypothesize that humans have evolved on a rugged adaptive landscape with strong selection for body height optima that differ among locations
    corecore