8 research outputs found

    Acute posthypoxic myoclonus after cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute posthypoxic myoclonus (PHM) can occur in patients admitted after cardiopulmonary resuscitation (CPR) and is considered to have a poor prognosis. The origin can be cortical and/or subcortical and this might be an important determinant for treatment options and prognosis. The aim of the study was to investigate whether acute PHM originates from cortical or subcortical structures, using somatosensory evoked potential (SEP) and electroencephalogram (EEG).</p> <p>Methods</p> <p>Patients with acute PHM (focal myoclonus or status myoclonus) within 72 hours after CPR were retrospectively selected from a multicenter cohort study. All patients were treated with hypothermia. Criteria for cortical origin of the myoclonus were: giant SEP potentials; or epileptic activity, status epilepticus, or generalized periodic discharges on the EEG (no back-averaging was used). Good outcome was defined as good recovery or moderate disability after 6 months.</p> <p>Results</p> <p>Acute PHM was reported in 79/391 patients (20%). SEPs were available in 51/79 patients and in 27 of them (53%) N20 potentials were present. Giant potentials were seen in 3 patients. EEGs were available in 36/79 patients with 23/36 (64%) patients fulfilling criteria for a cortical origin. Nine patients (12%) had a good outcome. A broad variety of drugs was used for treatment.</p> <p>Conclusions</p> <p>The results of this study show that acute PHM originates from subcortical, as well as cortical structures. Outcome of patients admitted after CPR who develop acute PHM in this cohort was better than previously reported in literature. The broad variety of drugs used for treatment shows the existing uncertainty about optimal treatment.</p

    In Vitro Models of Brain Disorders

    No full text
    The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models

    Electrophysiologic Monitoring in Acute Brain Injury

    No full text

    Brain resuscitation in the drowning victim

    Get PDF
    Item does not contain fulltextDrowning is a leading cause of accidental death. Survivors may sustain severe neurologic morbidity. There is negligible research specific to brain injury in drowning making current clinical management non-specific to this disorder. This review represents an evidence-based consensus effort to provide recommendations for management and investigation of the drowning victim. Epidemiology, brain-oriented prehospital and intensive care, therapeutic hypothermia, neuroimaging/monitoring, biomarkers, and neuroresuscitative pharmacology are addressed. When cardiac arrest is present, chest compressions with rescue breathing are recommended due to the asphyxial insult. In the comatose patient with restoration of spontaneous circulation, hypoxemia and hyperoxemia should be avoided, hyperthermia treated, and induced hypothermia (32-34 degrees C) considered. Arterial hypotension/hypertension should be recognized and treated. Prevent hypoglycemia and treat hyperglycemia. Treat clinical seizures and consider treating non-convulsive status epilepticus. Serial neurologic examinations should be provided. Brain imaging and serial biomarker measurement may aid prognostication. Continuous electroencephalography and N20 somatosensory evoked potential monitoring may be considered. Serial biomarker measurement (e.g., neuron specific enolase) may aid prognostication. There is insufficient evidence to recommend use of any specific brain-oriented neuroresuscitative pharmacologic therapy other than that required to restore and maintain normal physiology. Following initial stabilization, victims should be transferred to centers with expertise in age-specific post-resuscitation neurocritical care. Care should be documented, reviewed, and quality improvement assessment performed. Preclinical research should focus on models of asphyxial cardiac arrest. Clinical research should focus on improved cardiopulmonary resuscitation, re-oxygenation/reperfusion strategies, therapeutic hypothermia, neuroprotection, neurorehabilitation, and consideration of drowning in advances made in treatment of other central nervous system disorders

    Mechanisms of cellular invasion by intracellular parasites

    No full text

    Infectious Agents and Neurodegeneration

    Get PDF
    A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host's specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae

    Pharmacogenomics in the Development and Characterization of Atheroprotective Drugs

    No full text
    corecore