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Abstract A growing body of epidemiologic and experimen-
tal data point to chronic bacterial and viral infections as
possible risk factors for neurodegenerative diseases, including
Alzheimer’s disease, Parkinson’s disease and amyotrophic
lateral sclerosis. Infections of the central nervous system,
especially those characterized by a chronic progressive
course, may produce multiple damage in infected and neigh-
bouring cells. The activation of inflammatory processes and
host immune responses cause chronic damage resulting in
alterations of neuronal function and viability, but different

pathogens can also directly trigger neurotoxic pathways. In-
deed, viral and microbial agents have been reported to pro-
duce molecular hallmarks of neurodegeneration, such as
the production and deposit of misfolded protein aggre-
gates, oxidative stress, deficient autophagic processes, syn-
aptopathies and neuronal death. These effects may act in
synergy with other recognized risk factors, such as aging,
concomitant metabolic diseases and the host’s specific
genetic signature. This review will focus on the contribu-
tion given to neurodegeneration by herpes simplex type-1,
human immunodeficiency and influenza viruses, and by
Chlamydia pneumoniae.
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Introduction

Neurodegenerative diseases, including Alzheimer's disease
(AD), Parkinson's disease (PD), Huntington's disease (HD)
and amyotrophic lateral sclerosis (ALS), are devastating
pathologies characterized by progressive degeneration and
loss of specific subsets of neurons that lead to a decline in
brain functions such as cognition and locomotor control.
Although these diseases have very different clinical mani-
festations, depending partly on which region of the brain is
affected, they share some common features and pathological
hallmarks, including the formation and deposition of aber-
rant protein conformers, synaptic dysfunctions, oxidative
stress, deficient autophagic processes, and inflammation.

The causative agents of these highly complex diseases,
which are often the result of several combined genetic and
environmental factors, are still unknown and the molecular
basis underlying their pathogenesis has yet to be fully clar-
ified. Starting from the pioneer study by Bowery [1]
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showing the neurodegenerative effects produced by tetanus
toxin in rats, a significant emerging body of literature sug-
gests the possibility that CNS infections may play a cofac-
torial role in inducing neurodegenerative diseases [2].
Serological studies suggest a potential involvement of enter-
oviruses (EV) and human herpesviruses (HHV) in the aeti-
ology of ALS, a fatal neurodegenerative disease selectively
affecting motor neurons [3]. A viral origin of PD has also
been proposed on the basis of the close similarity between
the clinical symptoms of PD and those of Japanese enceph-
alitic virus [4]. Ever since the earliest papers describing the
neurological symptoms associated with influenza [5, 6], the
influenza virus has repeatedly been suggested as an aetio-
logical agent for PD [7]. Several findings also support the
involvement of infectious agents (in particular herpes sim-
plex virus type-1 [HSV-1] and Chlamydia pneumoniae) in
the pathogenesis of AD, a multifactorial disorder character-
ized by severe memory impairment and cognitive decline
that affects hippocampal and basal cortex neurons [8–15].
Among the human herpesviruses, herpes simplex virus,
Epstein Barr Virus, varicella zoster virus, cytomegalovirus,
human herpesvirus-6 and, more recently, herpesvirus-7 have
all been associated with multiple sclerosis (MS), an inflam-
matory disease leading to demyelization of nerve cell axons
in the spinal cord and brain [16–23].

Some of these correlations are not yet supported by
conclusive experimental and clinical evidence, but a grow-
ing body of data supports the hypothesis that chronic dam-
age induced by different infectious agents may concur to
produce neurodegeneration. Obviously, the long-term
effects of persistent or lifelong repeated infections may
differ in different hosts, according to their general health,
pharmacological treatments, genetic background, concur-
rent diseases, etc. Even considering the different outcomes
due to these conditions, several findings indicate that
pathogen-related long-term damage may underlie several
neuronal dysfunctions typical of aging [2].

In this regard, it is worth noting that the CNS may be
particularly vulnerable to infectious agents during aging on
account of alterations to the blood–brain barrier (BBB), as
well as age-related increased oxidative stress and impaired
energy production [2]. Aged neurons are certainly more
vulnerable to many insults, including the toxicity of viral
or prion proteins, due to increased oxidative stress and
impaired neurotrophic factor signalling pathways [24, 25].

Although activation of the host immune response in an
attempt to eradicate the pathogen [26] may significantly
contribute to produce neuronal damage, different pathogens
and/or their products may directly induce long-term degen-
erative effects, such as the deposit of misfolded protein
aggregates, increased levels of oxidative stress, deficient
autophagic processes, synaptopathies and neuronal death.
This review will focus on the degenerative effects of chronic

or persistent infections caused by herpes simplex virus,
human immunodeficiency virus, influenza virus and C.
pneumoniae.

Route of Entry of Infectious Agents into the CNS

Viruses, bacteria, protozoa and unconventional pathogens
such as prion proteins have the ability to invade the CNS
and cause acute infections which in some cases may be fatal
or which may progress to become chronic illnesses [26, 27].
Here, we focus on selected human viruses and bacteria to
describe various mechanisms of neuroinvasion (Fig. 1).

In immunocompetent subjects with a fully functional
BBB very few pathogens are able to infect the brain through
the blood. Indeed, the BBB and cerebral spinal fluid (CSF)
barrier prevent the unselective diffusion of vascular and
cellular components. The BBB, in particular, is composed
mainly of non-fenestrated endothelial cells interconnected
by tight junctions in contact with astrocyte processes. Be-
sides limiting the movement of cells and molecules to the
brain parenchyma and neurons, these cells also provide a
physical and cellular barrier to the perivascular space by
producing a basement membrane consisting of laminin.
However, some pathogens are able to disrupt the BBB and
to cross directly into the CSF through the porous capillaries
of the choroid plexus, thus passing into the brain and pro-
voking severe haemorrhagic encephalitis. When the BBB is
compromised, as in many diseases, different viruses can
enter the brain through the bloodstream.

Other possible routes of entry into the CNS are: (1)
infection of cells belonging to the monocyte–macrophage/
microglia lineage that are able to cross the BBB; (2) intra-
and trans-neuronal transfer from peripheral neurons.

1. Viruses of the lentivirus family, which includes HIV,
cross the BBB through the “Trojan Horse” mechanism
[28, 29], driven by infected leukocytes, which allow the
virus to escape the immune system and to move from
the bloodstream to the brain. Inflammation enhances
this invasion of the CNS, as inflammatory molecules
released during the systemic infection activate infected
leukocytes, which in turn attach to and invade the post-
capillary venule wall surrounding endothelial and pa-
renchymal basement membranes, thus crossing the
BBB. Leukocytes are further activated by interactions
between chemokine receptors expressed on their mem-
branes and chemokines circulating in the brain. For
example, increased expression of chemokine ligand 2
(CCL2) by endothelial cells and astrocytes following
contact with HIV-infected cells [30], together with
virus-induced alterations of endothelial adhesion mole-
cules and junctional proteins [31], amplifies disruption
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of the BBB and viral entry. Moreover, dysregulation of
BBB, likely caused by a combination of viral and host
factors (e.g., secreted viral proteins, inflammatory medi-
ators, antiviral therapies, drug or alcohol abuse, aging),
has been proposed as a critical component of HIV-
induced neuropathology [32]. Virus-bearing monocytes
then infect perivascular macrophages and microglia, but
not neurons, which are, however, negatively affected by
the release of inflammatory cytokines and/or viral pro-
teins by neighbouring cells.

2. The peripheral nerve endings located in the skin and the
mucosa mediate the other mechanism of entry of viruses
that infect the CNS. Depending on the differential ex-
pression of viral receptors, a particular neurotropic virus
will target a specific type of peripheral nerve ending,
including those of sensory, motor and olfactory neurons.
Viruses infecting these sites exploit cellular components
such as the axonal microtubules and microtubule-based

motor proteins [33] to move, through retrograde axonal
transport, from the cell periphery to the neuronal cell
body that contains the synthetic machinery exploited for
viral replication, as well as to return through anterog-
rade transport to the cell periphery and spread into target
cells [34].

HSV-1, for example, can infect oral and nasal mucosa
and then travels through retrograde axonal transport to the
trigeminal ganglion or the olfactory bulb, respectively,
where it establishes a latent infection or may rapidly enter
the CNS [35]. It is worth noting that HSV-1 infection has
been reported to suppress the induction of neuronal apopto-
sis in the olfactory neuroepithelium and trigeminal and
dorsal root ganglia in order to facilitate neuroinvasion of
the brain [36, 37]. Periodic reactivations from latency are
followed by axonal transport of newly produced HSV-1
virions either back to the site of primary infection, where

Fig. 1 Infectious agents can
reach the central nervous
system by either crossing the
blood–brain barrier (hematogen
route) or being transported by
axons of cranial nerve neurons
(for further details, see text)
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they cause new skin vesicles or mucosal ulcers, or onward to
the CNS, where they can cause a productive, but usually
mild infection, which may later become latent, as described
for rodents [38, 39]. In particular, newly produced virions
may target the limbic system, which includes the hippocam-
pus, thalamus and amygdala [40]. Indeed, in HSV enceph-
alitis, the major site of damage is the limbic system [41] that
is presumably reached through the olfactory bulb, since
HSV-1 can infect cells in the nasal endothelium [42, 43].

The olfactory system provides a bridge between the periph-
eral environment and the brain and several other neurotropic
viruses, including rabies, influenza A virus and parainfluenza
virus are known to infect the CNS by transmission through the
olfactory pathway. The A/WSN/33 strain of influenza virus has
been shown to enter the CNS via the olfactory epithelium [44].
However, it has also been hypothesized that it can enter the
CNS via other cranial nerves, including the vagus, and trigem-
inal nerves [45–48]. These nerves have processes that innervate
visceral organs and tissues that are thought to be initially
targeted by intranasal viral infection, including the olfactory
epithelium (olfactory nerve, CN I), orofacial mucosa (trigemi-
nal nerve, CN V) and digestive system (vagus nerve, CN X).
Accordingly, the virus has been found in the regions innervated
by these nerves following infection of animal models via
intranasal routes. The virus has also been detected (by immu-
nohistochemical staining of viral nuclear protein, NP) in the
visceral ganglia [48, 49]. However, evidence that the A/WSN/
33 strain of influenza has an affinity for the substantia nigra
[50], a neuronal population with no direct anatomical connec-
tion to the cranial nerve system, suggests that other routes of
invasion may be involved. In particular, it is possible to hy-
pothesize that it can move into the brain through the ependymal
cells lining the ventricles and shedding into the CSF, where it
can freely spread throughout the neuraxis; through the extrav-
asation from capillaries that penetrate into the brain; or through
direct invasion of the CNS after BBB disruptions.

After entering the CNS, viruses promote cell-to-cell dis-
semination through different mechanisms, i.e. release into the
synaptic cleft or via fusion events with neighbouring neurons.
They may also reinfect peripheral tissue. Alphaviruses use the
anterograde transport system to move from the cell body to the
axonal terminal where they are released by exocytosis into the
synaptic cleft [35]. However, during anterograde transport, the
virus can also exit through axonal varicosities before reaching
the termini and infect neighbouring cells [51, 52].

Invasion of the CNS by pathogens may result in acute
infection, possibly followed by latency and reactivations, or
in persistent infection causing chronic damage that accumu-
lates with time. The occurrence of each outcome may de-
pend on several factors, including the type of pathogen, the
kind of host immune/inflammatory response elicited, the
CNS region affected, the general conditions of the host
and the presence of concomitant diseases.

Epidemiological Evidence

HSV-1 and Alzheimer's Disease

Chronic and persistent exposure to HSV-1 (see Fig. 2) has
been proposed as a potential risk factor for AD. HSV-1 is a
ubiquitous neurotropic virus that affects between 56 and 85 %
of the world population, with country-to-country variations,
and more than one third of the population has recurrent
clinical HSV-1 infections and manifestations. Interestingly,
epidemiological studies have reported the presence of the
HSV-1 genome in post-mortem brain specimens from numer-
ous AD patients, particularly those who carry the type 4 allele
of the gene that encodes apolipoprotein E (APOE4), another
potential risk factor for AD [14, 56]. Moreover, genes related
to HSV-1 reactivation have been detected in the brain of
patients with familial AD, associated with β-amyloid deposits
[13], and HSV-1 DNA has been found in amyloid plaques
from the temporal and frontal cortices of AD sufferers [58].
Recently, a large prospective population-based study also
showed that the risk of AD is increased in elderly subjects
with positive titers of anti-HSV-1 IgM antibodies, which are
markers of primary or reactivated HSV-1 infections, while it is
not associated with anti-HSV-1 IgG antibodies, which are
markers of a life-long infection [59]. Finally, genome-wide
association (GWA) studies have correlated individual brain
susceptibility to HSV-1 infection with a genetic risk of AD
[60, 61]. In particular, analysis of data from GWA studies of
several thousand European AD patients and controls [60]
identified a set of AD-linked gene variants that may increase
the brain's susceptibility to viral infections [61]. These in-
clude: nectin-2, also known as herpes virus entry-mediator-B
or poliovirus receptor-related protein-2, which mediates the
entry of HSV into host cells; apolipoprotein E (APOE), par-
ticularly its ε4 allele, which besides being a well-estabilished
genetic risk factor for AD, has also been shown to influence
susceptibility to viral infections and spreading into neuronal
cells; translocase of the outer mitochondrial membrane 40
homolog (TOMM40), whose variations might influence mi-
tochondrial damage induced by HSV DNAase such as
UL12.5, and other genes.

These variants form a genetic signature that may determine
individual brain susceptibility to HSV-1 infection during aging
or susceptibility to pathogen-driven damages, particularly
those leading to neurodegeneration.

C. pneumoniae and AD

C. pneumoniae (see Fig. 3) infection was first linked to AD
on the basis of evidence that a high percentage (90 %) of
AD brains were found to be PCR-positive for this pathogen,
particularly in the cerebral regions most affected by AD [8].
In particular, this microorganism, which is able to infect
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microglia, astrocytes, perivascular macrophages and mono-
cytes [8, 62], was isolated from the tissue as metabolically
active and propagated in cells. Other studies failed to detect
C. pneumoniae in archival tissue of AD patients [63–65],
but it has to be underlined that two of these studies were
performed on tissue that was paraffin embedded, which may
have affected the identification of the organism using the
specific PCR technique [63, 65]. Other authors have dem-
onstrated the presence of C. pneumoniae in AD patient
brains through PCR analysis of frozen tissue [66]. More

recently, Little et al. demonstrated that intranasal inoculation
of C. pneumoniae in mice induced AD-like hallmarks in
brains [67]. Moreover, C. pneumoniae antibodies have been
identified in AD brains, colocalizing with plaques and tan-
gles in vulnerable brain regions [68].

HIV and Dementia

Almost 60 million people worldwide have been infected by
HIV (see Fig. 4), a virus known for its devastating effects on

Fig. 2 HSV is a double-stranded DNA virus, structurally composed of
a linear genome packaged into an icosahedral capsid enclosed by
tegument proteins and surrounded by a lipid bilayer membrane with
embedded proteins and glycoproteins (envelope). Primary infection in
humans usually occurs in the orofacial mucosa during childhood.
There the virus replicates within the epithelial cells and undergoes its
typical lytic life cycle ending with the production of infectious virions
and lysis of the host cell. HSV entry into the host cell requires
sequential interaction between specific viral membrane glycoproteins
(gB, gC, gD, gH and gL) and cellular receptors [heparan sulphate
proteoglycans (HSPG), nectin-1 and 2, herpesvirus entry mediator
(HVEM) or 3-O sulphated heparan sulphate (3-OS HS)]. On entry,
the nucleocapsid is transported to the nuclear membrane and the viral
DNA is released into the nucleus for transcription of viral genes and
replication. The HSV genome consists of two long structures of unique
sequences (designated long (UL) and short (US)), that encode over 80
distinct genes, and it is transcribed by the RNA polymerase II of the
infected host. Immediate-early genes are the first to be expressed

following infection and they encode proteins that regulate the subse-
quent expression of early and late viral genes. Early gene expression
then allows the synthesis of enzymes involved in DNA replication and
the production of certain envelope glycoproteins. Expression of late
genes occurs last; this group of genes predominantly encodes proteins
that form the virus particle. This latter is then released from host cells
by budding. HSV-1 is able to establish a lifelong latent infection in
sensory neurons, particularly in cellular bodies of those feeding the site
of primary infection [53]. This latency is characterized by the presence
of a functional viral genome without production of the infectious virus.
During this time, the latency-associated transcripts (LATs) are the only
prominent transcripts [54] whose role in generating functional peptides
or proteins is still a matter of debate [55]. Reactivation from latency
can be triggered by several external stimuli (stress, immunosuppres-
sion, etc.) that activate viral gene expression. Newly produced virions
are transported to the sites of primary infection where they cause
recurrent herpetic lesions in some people. Interestingly, APOE4 is a
risk factor for these recurrent herpetic lesions [56, 57]
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the immune system, that results in acquired immune deficien-
cy syndrome (AIDS), characterized by increased risk of sev-
eral opportunistic infections and diseases. Although effective
treatments for AIDS have prolonged the survival of infected
patients, they have also resulted in a growing number of
patients with neurological consequences of HIV infection
[69, 70]. The virus can also cause severe neurological disor-
ders, known as HIV-associated neurocognitive disorders
(HAND), that are characterized by cognitive, motor and be-
havioral abnormalities and comprise: asymptomatic neurocog-
nitive impairment (ANI), HIV-associated mild neurocognitive
disorder (MND) and HIV-associated dementia (HAD). These
pathologies are the result of the invasion of HIV and its
replication within the CNS and consequent virus-induced
degeneration of synapses and neurons in different brain
regions, as well as associated neuroinflammation and immune

activation of macrophages, microglia and astrocytes. Interest-
ingly, APOEε4 has been proposed as a genetic factor for the
development of a severe form of HAD, as it is for AD [71, 72].
Although the use of antiretroviral drugs, initially as monother-
apy (single agents such as zidovudine) and then as combina-
tion therapy (highly active antiretroviral therapy or HAART),
has changed the clinical management of HIV- and HAND-
positive patients by suppressing the systemic viral load and
consequently decreasing the mortality rates, the incidences of
both opportunistic infections in AIDS patients and the most
severe form of HAD, the prevalence of neurocognitive impair-
ment remains high [70, 73–75]. One possible explanation is
that HAART does not readily cross the BBB, making the CNS
a safe haven for infection and permitting ongoing degenerative
changes even when viral titers are low in the periphery. How-
ever, other factors have been suggested to be involved in

Fig. 3 Chlamydiae are Gram-negative bacteria. They are obligate
intracellular parasites because their multiplication depends on the host
cell for energy and various nutrients. Chlamidiae have evolved a
unique biphasic developmental cycle in which they alternate two
distinct morphological forms: the elementary body (EB) and the retic-
ulate body (RB). EBs are small tight bodies and represent the metabol-
ically inactive form of bacteria, which can resist environmental stress
and survive outside a host for a limited time. Infection begins with the
attachment of the EB to the surface of susceptible host cells, followed
by its internalization by endocytosis and the formation of phagosomes
(Chlamydia inclusions) that are heavily modified by chlamydial pro-
teins which prevent their fusion with lysosomes. Shortly after uptake,
EBs differentiate into the metabolically active form of RB and begin
to replicate within the phagosomes. RBs replicate by binary fission
that, after 24–72 h, becomes asynchronous, with some RBs

converting back to EBs. Finally, EBs are released from infected cells,
often after causing the death of the host cells, and can infect new
cells, either in the same organism or in a new host. C. pneunoniae
was classified as the third species of Chlamidia and was associated in
humans with acute infections of the lower respiratory tract. It is
recognized as a common cause of mild pneumonia in children and
young adults. It infects both epithelial cells and macrophages within
the lungs and may be disseminated to sites outside of the lungs by
infected monocytes and macrophages. Infection may also persist or,
alternatively, the bacterium may be present in asyntomatic patients.
Recently, a large volume of research showed evidence that C. pneu-
moniae may contribute directly and indirectly (immuno-mediated) to
atherosclerosis. Indeed, it was one of the few infectious agents that
have been found within and isolated from cells of human atheroscle-
rotic plaques
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modulating HAND pathologies, including the effects of aging
on the vulnerability of the brain, the persistence of HIV
replication in brain macrophages, the evolution of highly
neurovirulent HIV strains affecting the CNS, and even long-
term CNS toxicity due to HAART [reviewed in 76].

Influenza Virus and Parkinson's Disease

The influenza virus (see Fig. 5) has been implicated as both
a direct and an indirect cause of PD, on the basis of both
clinical descriptions and epidemiological studies. However,
the link with PD is somewhat controversial. Much of the
association of Parkinsonism with influenza and many other
viruses stems from an outbreak of encephalitis lethargica
(EL) (von Economo's disease) and the postencephalitic

Parkinsonism that occurred subsequent to the 1918 influen-
za pandemic caused by a type A H1N1 influenza virus [78,
79, reviewed in 80]. Although the hypothesis that EL was a
complication of influenza is supported by several data, it is
still a matter of debate. One piece of evidence against the
role of influenza as an agent of PD is the absence of viral
RNA recovered from the brains of postencephalitic PD
patients [81, 82], the absence of any known mutations that
would make the 1918 influenza virus neurotropic, and ques-
tions regarding the timing of the 1918 pandemic waves and
the outbreak of EL. Despite the apparent strength of the
direct evidence against the influenza hypothesis, there is a
strong epidemiological tie, based mostly on the increased
incidence of PD in the wake of the 1918 H1N1 influenza A
pandemic [83–85]. It has even been shown that persons born

Fig. 4 HIV-1 is an enveloped icosahedral retrovirus, belonging to the
Lentivirus subgroup of Retroviridae family. Its genome is constituted
by two identical copies of non-complementary positive single-stranded
RNA, enclosed by a capsid composed of several copies of the viral
protein p24. The single-stranded RNA is tightly bound to nucleocapsid
proteins and enzymes needed for viral replication and assembly such as
reverse transcriptase, proteases, ribonuclease and integrase. A matrix
composed of the viral protein p17 surrounds the nucleocapsid and this
is, in turn, surrounded by the viral envelope containing the surface
glycoproteins gp120 and gp41 as protruding spikes. The HIV replica-
tion cycle begins with adsorption of the viral particles to CD4 mole-
cules (a member of the immunoglobulin superfamily) on the surface of
susceptible cells. The subsequent interaction with a co-receptor be-
longing to the family of chemokine receptors (CXCR4 or CCR5) plays
a major role in membrane fusion and entry. Shortly after entry, subviral
particles are partially uncoated in the cytoplasm and initiate the reverse
transcription of viral RNA. The newly produced DNA is then

transported into the nucleus and integrated into the host DNA by the
virus-encoded integrase. The integrated HIV DNA is called provirus.
The provirus may remain inactive for a long time, producing few or no
new viral particles. The coordinated interaction of the HIV-encoded Tat
protein and cellular transcription factors with the RNA polymerase II
transcription apparatus starts the production of viral genomic RNA and
messenger RNA, which is then spliced into smaller pieces, exported
from the nucleus into the cytoplasm and translated into the proteins. In
addition to viral structural proteins and enzymes, the HIV genome
encodes the regulatory proteins (Rev and Tat, which is secreted by
HIV-infected cells) and several accesory proteins: Vif, Vpu, Vpr, Vpx
and Nef, playing an important role in the viral replication, disease
pathogenesis and immune evasion. At the end of viral replication cycle,
envelope polyproteins are transported to the plasma membrane where
viral progeny begins assembly and budding from the infected cells.
Then, subsequent proteolysis by viral protease generates mature
particles
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during the 1918 influenza pandemic had a 2–3-fold higher risk
of Parkinson's disease than those born prior to 1888 or after
1924 [86, 87]. Poskanzer and Schwab [84] also showed an
increase in PD onset based on an external event occurring
around 1920. Recently, a large observational study carried out
by Toovey et al. [88] using a large database from the UK,
identified 3,976 cases of PD and 18,336 of Parkinson symp-
toms (PS) between 1994 and 2007 and concluded that influ-
enza infections are associated with transient neurological
sequelae such as tremor or gait disturbances. Interestingly,
the risk of developing PS increases with the number of influ-
enza attacks, suggesting that influenza-associated neuronal
injury may be a cumulative process. The relative risk of
developing neurological PS was highest within the first few
weeks after a diagnosed and recorded influenza infection.

Infectious Agents and Neurodegenerative Processes

Protein Misfolding in the Brain

Numerous neurodegenerative disorders share common fea-
tures, including protein aggregation and the formation of
inclusion bodies or aggregate deposits in selected brain
regions. These deposits usually consist of insoluble fibrillar
aggregates containing misfolded protein with β-sheet confor-
mation. Although the distribution and composition of these
protein aggregates are different in each neurodegenerative
disease, they show similar morphological, structural and stain-
ing characteristics [89] and represent typical disease hall-
marks. Two types of protein deposit characterize AD: (1)
amyloid plaques, comprising mainly 40- to 42-residue

Fig. 5 Influenza Aviruses are enveloped, negative strand RNAviruses
belonging to the Orthomyxoviridae family. Their genome consists of
eight single-stranded RNA segments encoding 11 or 12 proteins: the
receptor-binding haemagglutinin (HA); the sialic acid-destroying en-
zyme neuraminidase (NA), the ion channel M2, the matrix protein M1;
the nucleoprotein (NP); the polymerase acidic protein (PA), polymerase
basic proteins 1 and 2 (PB1, PB2) and the pro-apoptotic protein
polymerase basic 1 (PB1)-F2; the nuclear export protein (NEP; also
known as NS2) and the host antiviral response antagonist non-
structural protein 1 (NS1); the newly identified N40 protein, which is
expressed from the PB1 segment and has an unknown function [77].
Within the virion, each of the eight RNA segments forms a viral
ribonucleoprotein (RNP) complex: in particular, viral RNA is wrapped
around NP, and this structure is in turn bound to the viral polymerase
complex, to constitute the viral nucleocapsid. In the initial stages of
influenza A virus replication, the viral HA binds to host cell receptors
that contain terminal α-2,6-linked or α-2,3-linked sialic acid (α-2,6-

SA or α-2,3-SA) moieties, and the virus enters the cell by receptor-
mediated endocytosis. Cleavage of HA by cellular proteases is required
to expose the HA peptide that is responsible for the fusion between the
viral envelope and the endosomal membrane. Acidification of the late
endocytic vesicles allows the viral HA to undergo a conformational
rearrangement that produces a fusogenic protein. The H+ ions in the
acidic endosome are pumped, via the viral M2 ion channel, into the
virus structure allowing the virus uncoating and the release of RNP
complexes into the cytoplasm. The viral RNA is then imported in an
ATP-dependent manner into the cell nucleus for transcription of ge-
nomic and messenger RNAs which are transported to the cytosol for
translation. Viral HA, NA and M2 are synthesized in the Endoplasmic
Reticulum, transported by the trans-Golgi secretory pathway and the
mature proteins are inserted in the plasma membrane. New viral RNA
is encased in the nucleocapsidic proteins and, together with matrix
protein, is transported to cell surface where HA and NA will be
incorporated. Progeny virions are then released from cells by budding
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peptides named β-amyloid peptides (Aβs), are deposited
extracellularly in the brain parenchyma and around the cere-
bral vessel wall [90]; (2) neurofribillary tangles containing
paired helical filaments, composed mainly of hyperphos-
phorylated tau protein, accumulate in the cytoplasm of degen-
erating neurons [91]. The aggregates that characterize PD
consist mainly of a protein named α-synuclein (α-SYN),
which accumulates in Lewy bodies in the cytoplasm of sub-
stantia nigra neurons [92]. In HD patients, intranuclear depos-
its of a polyglutamine-rich version of huntingtin protein are
found in the striatum [93]. SLA is characterized by aggregates
composed mainly of superoxide dismutase in cell bodies and
axons of motor neurons [94]. Finally, brains with various
forms of transmissible spongiform encephalopathies (TSE)
are characterized by an accumulation of preotease-resistant
aggregates of prion protein (PrP) [95].

Historically, lesions that contain aggregates were considered
to be pathogenic. In effect, abnormal aggregates are found in
the brain region most affected by each disease. Additionally,
mutations in the genes coding for misfolded proteins cause
familial forms of these diseases, characterized by an earlier
onset and a more severe phenotype than the sporadic forms.
Recently, several findings have suggested that the small inter-
mediates, i.e. soluble oligomers, within the complex multistep
process by which misfolded proteins assemble into inclusion
bodies are the most toxic forms of these aberrant proteins. They
appear to be able to affect normal cell activities, whereas
aggregates may represent a cellular attempt to wall off poten-
tially toxic material [96] or might function as a reservoir of the
bioactive oligomers.

Amyloid peptides (Aβs), found in extraneuronal plaques in
AD patients as well as in intraneuronal compartments, result
from the amyloidogenic proteolytic cleavage of Amyloid
Precursor Protein (APP) by the sequential action of β- and
γ-secretase enzymes, and a significant body of evidence sug-
gests that Aβ accumulations in AD are the result of an
imbalance between Aβ production and Aβ clearance
[97–99]. Mutations in genes encoding APP and presenilin, a
component of the γ-secretase complex, have been associated
with the familial form of AD, whose pathogenesis is undoubt-
edly linked to their involvement in Aβ overproduction. How-
ever, the causes of the latter in sporadic forms of the disease
have yet to be fully clarified. Interestingly, some pathogens
have been associated with or involved in Aβ accumulation.

HSV-1 and Protein's Aggregates

The possible links between HSV-1 and Aβ are supported by
experimental findings. Firstly, amyloid peptide is characterized
by some degree of sequence homology with the HSV-1 gly-
coprotein B, and the viral protein has been suggested by some
to act as a seed for Aβ deposits in amyloid plaques [100].
Moreover, new HSV-1 particles produced in the PNS have

been proposed to recruit cell membranes containing APP,
possibly during packaging in the Golgi apparatus [101], and
to release APP during transport into the brain, thus contributing
in some way to the formation of amyloid deposits. HSV-1 has
also been shown to bind APP directly within the axonal
transport into neurons [102, 103]. Secondly, Wozniak et al.
[104] reported the accumulation of Aβ peptides in neurons and
mouse brains infected with HSV-1, and then [58] the presence
of the viral genome within amyloid plaques in AD brains.
Other studies suggest that HSV-1 infection can interfere with
APP processing: Shipley et al. [105] showed that HSV-1
infection of neuroblastoma cells induced the formation of a
55-kDa C-terminal fragment of APP; Wozniak et al. [104]
found that BACE1 (β-secretase) and nicastrin (an essential
component of the γ-secretase complex) immunolabeling is
increased in the brains of HSV-1-infected mice. We recently
reported that HSV-1 produces marked changes in neuronal
excitability and intracellular Ca2+ signalling that cause APP
phosphorylation and intracellular Aβ accumulation in rat cor-
tical neurons [106]. We also demonstrated that HSV-1 triggers
amyloidogenic cleavages of APP that are mediated in part by
the action of β-secretase, γ-secretase and caspase-3-like
enzymes, and that these result in the formation and intracellular
accumulation of different APP fragments, including Aβ in
both monomeric and oligomeric forms, with established po-
tential for neurotoxicity [107] (Fig. 6). Finally, Cheng and
colleagues recently demonstrated that intracellular HSV-1
interacts with APP, and that this interplay enhances viral trans-
port and disrupts APP transport and distribution [108]. As for
Aβ production, HSV-1 has been shown to cause the hyper-
phosphorylation of the microtubule-associated tau protein,
thus impairing its intracellular transport functions. Zambrano
et al. [109] first linked HSV-1 to tau hyperphosphorylation,
showing evidence of altered microtubule dynamics and neurite
damage occurring in HSV-1-infected cultures of murine corti-
cal neurons. Subsequently, HSV-1 infection in neuroblastoma
and glioblastoma cells was shown to induce the phosphoryla-
tion of tau at a number of sites that were shown to be phos-
phorylated in AD, also demonstrating a consistent increase in
the amount of the relevant enzymes, i.e. glycogen synthase
kinase 3β and protein kinase A [110]. More recently, Ler-
chundi and colleagues [111] showed evidence that HSV-1
induces the caspase-3-mediated cleavage of tau protein at its
specific site (aspartic acid 421). This event has been associated
with an increased kinetics of tau aggregation, observed in
neurodegenerative pathologies. Overall, these findings support
the idea that HSV-1 could contribute to neurodegeneration that
characterizes age-associated pathologies such as AD.

HIV and Protein's Aggregates

There is a growing body of evidence indicating accelerated
deposition of amyloid plaques also in HIV-infected brains.
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However, how HIV viral infection increases Aβ accumula-
tion is poorly understood. It has been suggested that viral
infection leads to increased production and impaired degra-
dation of Aβ, mediated by upregulation of proinflammatory
cytokine and inhibition of Aβ degrading enzyme, respec-
tively [112–116]. Macrophages and microglia, both of
which are productively infected by HIV in brains, play a
pivotal role in Aβ degradation through the expression and
execution of two endopeptidases, neprilysin (NEP) and
insulin-degrading enzyme. It has been reported that HIV
viral protein Tat-derived peptide inhibits NEP activity in
vitro, and recombinant Tat added directly to brain cultures

resulted in a 125 % increase in soluble Aβ oligomers [113,
116]. Recently, it was shown that monomeric Aβ degrada-
tion by primary cultured macrophages and microglia was
significantly impaired by HIV infection due to an impair-
ment in NEP endopeptidase activity, probably caused by the
diminished transport of NEP to the cell surface and intra-
cellular accumulation at the endoplasmic reticulum and in
lysosomes [117]. The authors suggest that the malfunctioning
of NEP in infected macrophages may contribute to the accel-
eration of β amyloidosis in HIV-infected brains, and propose
modulation of macrophages as a potential preventive strategy
for Aβ-related cognitive disorders in HIV-affected patients.

Fig. 6 Effects of HSV-1 on
APP phosphorylation and
intracellular accumulation of
amyloid-β protein (Aβ42) in
cultured cortical neurons of E18
rats. a–c Time-dependent APP
phosphorylation at threonine
668 induced by HSV-1;
phosphorylated APP (pAPP)
staining (white) in
mock-infected cells (a),
1-h after cell challenge with
HSV-1 (b) and 18 h
post-infection (p.i.) (c).
Neuronal infection is
documented by HSV-1 labeling
(red). d–f: no significant Aβ42
labeling (green) is observed in
mock-infected cortical neurons.
g–i Most HSV-1-infected
neurons (red) exhibit Aβ42
immunoreactivity. j–l: high
magnification image of a
HSV-1-infected neuron
showing marked Aβ42 stain-
ing. In f, i and l, the cell nuclei
were stained with DAPI (blue).
Calibration bars: 20 μm
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Increased Aβ amyloidosis appears to be accelerated in brains
of patients undergoing HAART [118]. The mechanisms
through which HAART contributes to Aβ deposition are
largely unknown. HAART is also reported to induce metabol-
ic dysregulation, resulting in a hyperlipidemia, alterations in
body fat distribution, diabetes, insuline resistance and coro-
nary artery disease. Recently, Giunta and colleagues [119]
provided evidence that antiretroviral treatment, especially
when as combination, impairs microglial phagocytosis of β-
amyloid and increases its production by neurons. HIV has also
recently been shown to increase the level of hyperphosphory-
lated tau, through upregulation of its kinase CHK5, in a subset
of HIV patients with the inflammatory condition known as
HIV encephalitis [120]. A similar pattern of neurodegenera-
tion, which includes increased brain levels of CDK5 and p35,
alterations in tau phosphorylation and dendritic degeneration,
was observed in transgenic mice engineered to express the
HIV protein gp120. A previous paper by Giunta et al. [121]
reported an increased amyloid-β deposition and tau hyper-
phosphodrylation in a mouse model of HIV-1 Tat-induced
AD-like pathology generated by crossing PSAPP (APPswe
and PSEN1dE9) [122] and HIV-1 Tat transgenic mice [123]
compared with PSAPP mice, indicating that the viral protein
Tat significantly promotes an AD-like pathology in PSAPP/
Tat mice.

C. pneumoniae and Aβ Aggregates

Intranasal inoculation of C. pneumoniae (isolated from post-
mortem brains of AD patients) has been shown to induce the
formation of amyloid plaques in the brains of wild-type
mice that increase in number as the disease progresses
[67], together with intraneuronal Aβ42 accumulation. How-
ever, the bacterium effects on plaque formation have been
contested by a subsequent similar work showing that a
different strain of Chlamydia was unable to induce Aβ
plaque formation in the brains of infected mice [124]. More
recently, Chlamydia antigens have been detected alongside
amyloid deposits and tau tangles in post-mortem AD brain
tissue [68]. Further research is required to demonstrate def-
initely how both intracellular and extracellular amyloid
aggregates and C. pneumoniae are interrelated.

Exposure of mammalian neuronal and glial cells and
organotypic cultures to Borrelia burgdorferi spirochetes
has been shown to produce amyloid deposits and tau hyper-
phosphorylation, indicating that bacteria and/or their degra-
dation products may enhance the cascade of events leading
to AD [125]. In this regard, it is noteworthy that spirochetes
frequently co-infect with other bacteria and viruses, i.e. C.
pneumoniae and HSV-1, suggesting that concurrent infec-
tions with several pathogens may also occur in AD. Finally,
recent data reporting that Aβ peptides show an anti-
microbial activity [126] and might act as a defence molecule

of innate immunity which in some way support the hypoth-
esis of the involvement of infectious agents in AD patho-
genesis and aetiology: the accumulation of Aβ and plaque
deposits may derive from an over-production of Aβ pepti-
des directed against pathogenic neuroinvasions.

Influenza Virus and α-Synuclein Aggregates

The PD hallmark Lewy bodies are composed mainly of
aggregated α-SYN. This protein aggregation has been
shown to depend on the phosphorylation of a number of
serine residues in α-SYN, particularly serine 129 [127].
Jang et al. [128] demonstrated that the highly infectious,
neurotropic A/Vietnam/1203/04 (H5N1) influenza virus
progresses from the peripheral nervous system into the
CNS, where it can induce PD symptoms and the activation
of microglia, a significant increase in phosphorylation and
aggregation of α-SYN, which likely results in the observed
substantia nigra pars compacta (SNpc) dopaminergic neuron
degeneration 60 days after resolution of the infection.

Alteration of Autophagic Processes

Autophagy is a highly conserved mechanism for the degra-
dation and recycling of superfluous or damaged proteins as
well as entire organelles that occurs mainly in cells under
metabolic stress in order to provide an energy supply. This
pathway is therefore essential for promoting health and
longevity by regulating cellular survival, development, dif-
ferentiation and homeostasis, as well as for defending cells
from infectious intruders [129]. Different forms of autoph-
agy (macroautophagy, microautophagy and chaperone-
mediated autophagy) have been described as regulators of
cell fate [130] and their differences depend on their physi-
ological functions and the mode of cargo delivery to lyso-
somes. In particular, macroautophagy, the major regulated
catabolic process of long-lived protein and organelle degra-
dation, takes place within double-membrane vesicles,
termed autophagosomes that deliver cytoplasmic cargo to
lysosomes, whose hydrolases ensure the complete degrada-
tion of unwanted material. The formation of autophago-
somes is directly catalyzed by LC3, a ubiquitin-like
molecule, and is regulated by specific proteins of the yeast
Atg family [131]. In particular, Beclin-1, the mammalian
orthologue of yeast Atg6, has a central role in autophagy by
interacting with several cofactors to regulate the biogenesis
and maturation of autophagosomes as well as their fusion to
lysosomes, thereby promoting autophagy.

The dysregulation of autophagy may contribute to a
number of diseases, including aging, cancer, infectious dis-
eases and neurodegenerative disorders [132–136]. In the
latter case, defects in autophagy have been associated with
the presence of aberrant proteins in the brain both in
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experimental models and in human patients. Mice engi-
neered to suppress basal autophagy show neurodegenerative
hallmarks, such as accumulation of inclusion bodies and
intracellular protein aggregates in the brain [137, 138].
Increased numbers of autophagosomes have been found in
AD, TSE, PD and HD brains where they may reflect the
activation of autophagy as a physiological response to the
disease or as a consequence of autophagosomal maturation
defects, as in the case of AD [139–141]. Indeed, autophagy
plays a key role in the clearance of aggregated proteins
(oligomers and fibrils) associated with several neurodegen-
erative diseases, as they are poor substrates for proteasomal
degradation. Acquired defects in autophagosome formation
may result from the sequestration of autophagy proteins in
the aggregates formed by mutant or misfolded proteins, as
well as from defects in Beclin-1 and other autophagic pro-
teins or from impaired delivery of autophagosomes to lyso-
somes due to mutation or alterations that affect the dynein
motor machinery. Autophagy also targets RNA and DNA
viruses and microbes, including herpes simplex virus, for
sequestration and elimination [142–144], and this effect is
particularly useful for long-lived cells such as neurons, in
which it may represent a non-cytolytic mechanism of viral
clearance. Moreover, autophagy may also exert a protective
function during infection with neurotropic viruses, by pro-
moting the survival of infected neurons and minimizing
neuronal dysfunction. In addition, it is possible that autoph-
agy may contribute to class II presentation of viral antigens
by microglia or astrocytes during CNS infection. However,
some infectious agents may overcome or take advantage of
autophagy by replicating within autophagic vacuoles
[145–148] or by inhibiting this process.

HSV-1 and Autophagic Pathways

HSV-1 encodes the ICP34.5 protein—infected cell polypep-
tide 34.5—that can disrupt the autophagic process [144,
149], thus protecting itself against destruction. This protein
has also been shown to reverse the protein kinase R (PKR)
defence mechanism, which is activated by the presence of
virus-derived double-stranded RNA (dsRNA) and is aimed
at shutting off cellular protein synthesis through the phos-
phorylation of elongation initiation factor 2α (eIF2α) [150].
Such a shutting-off would inhibit the synthesis of viral
proteins, initiate apoptosis [151] and enhance autophagy.
ICP34.5 mediates HSV1-induced eIF2α dephosphorylation
[152], thus allowing viral protein synthesis. However, it
uses two different mechanisms to antagonize host autoph-
agy and PKR function. The N-terminal domain of ICP34.5,
which is not required for the reversal of PKR-mediated
eIF2α phosphorylation, binds to Beclin-1 and inhibits its
autophagic function in autophagosome biogenesis [153],
while the C-terminal domain of ICP34.5 (the GADD34

domain) recruits a host phosphatase, PP1α, to reverse
PKR-mediated eIF2α phosphorylation and host cell transla-
tional shut-off [154]. These two mechanisms cooperate to
block autophagy and may exacerbate the defective autoph-
agy processes that characterize aging brains. Moreover,
HSV-1-induced PKR activation in neuroblastoma cells and
peripheral nervous tissue from infected mice has been sug-
gested to increase the amyloidogenic APP processing and
Aβ production by promoting BACE1 translation via eIF2α
phosphorylation [155]. Interestingly, a recent paper from
Santana et al. [156] shows that HSV-1 infection in neuro-
blastoma cells induces intracellular Aβ accumulation in
autophagosomes, whose fusion with lysosomes appears to
be aborted. As described above, HSV-1 has been proposed
as a risk factor for AD, and APP, Aβ and the enzymes
responsible for Aβ formation are present in autophago-
somes in AD brains [157], which may constitute a reservoir
of these pathogenic proteins. In this context, viral action via
the ICP34.5 gene may prevent not only degradation of HSV-
1 in the brain but also degradation of the aberrant cell
proteins, including Aβ and hyperphosphorylated tau, thus
possibly contributing to the formation of amyloid aggre-
gates and neurofibrillary tangles.

HIV and Autophagosome Maturation

Like HSV-1, HIV has been shown to block autophagosome
maturation, probably to prevent its own degradation. The
autophagic step affected is autophagosome fusion to lyso-
somes. In particular, the viral protein Nef has been shown to
inhibit autophagosome fusion with lysosomes by interacting
with Beclin-1 and disabling its correct complex formation
with the autophagic proteins that promote this fusion [158].
Moreover, HIValso appears able to inhibit neuronal autoph-
agy. In particular, a recent study showed that products of
microglia infected by the simian immunodeficiency virus
(SIV, the HIV-analog that infects monkeys) inhibit neuronal
autophagy, resulting in decreased neuronal survival, and that
two major mediators of HIV-induced neurotoxicity, tumour
necrosis factor-alpha and glutamate, had similar autophagy-
reducing effects in neurons. Interestingly, the induction of
autophagy in neurons through rapamycin treatment con-
ferred significant protection to neurons in SIV-infected
brains [159].

Influenza Virus and Authophagic Pathways

Influenza virus has also been reported to affect autophagy,
causing autophagy activation in early phases of the infection
in order to promote viral replication [160], while later it
induces autophagosome accumulation in the cytoplasm of
infected cells. Again, this latter event seems to be due to
virus-induced defects in autophagosome maturation,
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achieved possibly via viral matrix protein 2, a proton-
channel pumping unit, which binds ATG6/Beclin 1 [158,
161] and blocks the fusion between lysosomes and autopha-
gosomes. The functional consequence of this block is a
higher susceptibility of influenza A virus-infected cells to
apoptosis. Our group [160] has recently demonstrated that
pepstatin A, an inhibitor of cathepsin D that is involved in
both autophagy and apoptosis [162], is able to decrease viral
replication by interfering with this pathway. Interestingly, as
previously reported [163], the influenza virus is able to
induce apoptotic cell death in neuronal cells, even though
they are characterized by a high expression of the antiapop-
totic protein Bcl-2 and relatively low permissiveness to
influenza virus replication, and it is possible that in this
context a blocking of the autophagic process may enhance
virus-induced apoptosis and thus neurodegeneration.

The reported findings suggest that autophagy is an im-
portant process that needs to be preserved in neurons ex-
posed to insults that can lead to neurodegeneration,
including viral infections.

Oxidative Stress and Neurodegeneration

Several experimental findings point to oxidative stress as a
key element in the pathogenesis of neurodegenerative dis-
eases. The brain is particularly vulnerable to oxidative dam-
age on account of its high oxygen levels, the presence of
polyunsaturated fatty acids, transition metals in ionic form
and low amounts of antioxidants [164]. In the elderly, where
the redox state is unbalanced because of high levels of pro-
oxidant species, the presence of metals such as iron ions in
an oxygen-rich environment can induce further production
of reactive oxygen species (ROS). The analysis at autopsy
of brains from AD patients shows high levels of ROS and a
drastic decrease in the intraneuronal content of glutathione
(GSH), mainly in the hippocampus and cortex. These fea-
tures also characterize the substantia nigra of PD patients,
and are found in spinal fluid of patients with ALS [reviewed
in 165]. This is associated with a high rate of cell membrane
lipid peroxidation and nitration or oxidation of proteins and
nucleic acids [166]. In particular, several of these oxidative
events seem to be target-specific, such as for tyrosine nitra-
tion in α-SIN and in tau protein that are found in PD and
AD, respectively [167, 168].

Viral Infections and Oxidative Stress

Viral infections are frequently associated with host-cell redox
changes characteristic of oxidative stress [169–173].

HSV-1 HSV-1 infection induces an alteration of the intra-
cellular redox state towards a pro-oxidant state through the
depletion of GSH (the main endogenous antioxidant), the

production of ROS, the induction of mitochondrial DNA
damage, and endoplasmic reticulum (ER) stress [173–176].
Furthermore, HSV-1 infection in murine neuronal cells
increases ROS levels and lipid peroxidation [177]. In agree-
ment with these observations, high levels of lipid peroxida-
tion products and protein nitrosylation were found in those
brain areas where replicating or latent HSV-1 were detected
after infection in primary sites [178, 179]. Overall, these
data indicate the occurrence of oxidative damage in the
brain following virus infection.

Alterations in the intracellular redox state towards a pro-
oxidant state have been associated with formation of the
typical histological alterations of brain tissue that occur in
neurodegenerative diseases, including Aβ peptide genera-
tion and deposition [180–182]. HSV-1 was found to trigger
multiple amyloidogenic APP processing mediated mainly
by virus-induced upregulation of β- and γ-secretases. Inter-
estingly, this event was prevented by antioxidant agents
[107], suggesting that HSV-1-induced oxidative stress in
neuronal cells may trigger β- and γ-secretase activation
and, consequently, APP processing and Aβ formation.
Some kinases involved in tau and APP phosphorylation
[183–185] belong to the stress-activated protein kinase family,
known to be activated during oxidative stress. A strong acti-
vation of these kinases has been observed both in post-mortem
brains from AD patients [186, 187] and during in vitro HSV-1
infection [188, 189]. HSV-1 has been shown to induce AD-
specific tau and APP phosphorylation, as well as the upregu-
lation of the kinases involved in this event, such as GSK3β and
PKA [106, 109, 110]. These effects may be further enhanced in
vivo as consequence of oxidative stress response produced by
microglial cells during HSV-1 infection [190].

HIV Pioneer studies [191–193] showed evidence of oxida-
tive stress markers in the cells and body fluids of HIV-
infected patients. Garaci et al. [194] demonstrated that in
vitro HIV infection significantly decreases the GSH content
of human macrophages and suggested that this effect might
be related to the preferential use of cysteine (the rate-
limiting amino acid for GSH synthesis) for the synthesis of
viral proteins. Interestingly, the brains of patients with HIV
dementia show oxidative damage markers, including in-
creased amounts of peroxynitrite, 4-hydroxynonenal and
protein carbonyls [195]. The viral proteins gp120 and Tat
have been shown to increase oxidative stress and to induce
several damaging effects in neurons, including destruction
of the cytoskeleton. These effects were reversed by antiox-
idants, suggesting an important role for oxidative damage in
the pathogenesis of HIV dementia [196, 197]. Overproduc-
tion of superoxide anions and other free-radical species,
possibly via the release of proinflammatory molecules by
HIV-infected macrophages/microglial cells, has been sug-
gested to play a role in the astroglial apoptotic cell death that
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characterizes HAD [198]. In this context, gp41, an envelope
glycoprotein of HIV, has been shown to trigger inducible
NO synthase (iNOS) expression and consequently NO pro-
duction in human astrocytes and murine cortical brain cells
in culture [199, 200], thus possibly contributing to the HAD
pathogenesis.

Influenza Virus Decreases in GSH levels and oxidative
stress have also been found in cells and animals infected
by influenza virus [172, 201–204]. Virus-induced pro-
oxidant conditions play an important role in viral replica-
tion, by activating cellular kinases involved in nucleo-
cytoplasmic traffick of viral proteins and by promoting the
maturation of viral HA [163, 205].

Virus-induced oxidative stress has also been associated
with the onset and progression of influenza virus-associated
encephalopathy (IE) in murine models [reviewed in 206].
Markers of oxidative stress have been found in serum and
CSF of patients with IE and have been proposed as possible
predictive biomarkers of the severity of the disease [207].
As mentioned before, influenza virus infection has been
related to the appearance of biochemical markers typical of
PD [128], a neurodegenerative disease characterized by high
levels of oxidative stress in substantia nigra and other brain
regions. On the basis of these evidences, it is possible to
speculate that virus-induced oxidative stress may play a role
in this process. As a matter of fact, oxidative stress has
shown to play a major role in the degeneration of the
dopaminergic neurons that characterize PD [208]. The vul-
nerability of these neurons to oxidative stress was demon-
strated by the ability of pro-oxidant molecules, such as 6-
hydroxydopamine (6-OHDA), paraquat and rotenone to
damage substantia nigra cells after stereotaxic or systemic
administrations. Thus, chronic age-related oxidative stress
[209] may result in the accumulation of misfolded proteins
[210], through a direct oxidation of protein disulfide iso-
merse (PDI), an oxido-reductase involved in folding of
glycoprotein. Specifically, the S-nitrosylation of PDI may
play a central role in the progression of PD. Indeed, PDI S-
nitrosylation disrupts its neuroprotective role of preventing
neuronal cell death triggered by ER stress, the accumulation
of misfolded proteins, or proteasome inhibition [211].

It is possible to speculate that an increased “oxidative
burst” generated when the influenza virus infects aged neu-
ronal cells may contribute to alterations in PDI function,
increasing the production of misfolded proteins and contrib-
uting to the pathogenesis of PD.

Synaptic Alterations

A large body of evidence suggests that deficits in synaptic
transmission and plasticity play a major role in cognitive

impairment and memory loss that characterize several neu-
rodegenerative disorders including AD [212, 213]. Synaptic
transmission occurs through chemical neurotransmitters that
are released from pre-synaptic terminals in response to
action potentials and bind specific receptors present on the
post-synaptic side. The interaction between neurotransmit-
ters and their post-synaptic receptors generates electrical
signals (named postsynaptic potentials) that, when appropri-
ately summed, may give rise again to action potentials thus
allowing the propagation of information through the neural
networks. Synaptic plasticity reflects the ability of a synap-
tic contact to change its efficiency (i.e. its signalling
strength) depending on the activation pattern it previously
experienced, and these plastic changes in information trans-
mission are critical to learning and memory. However, the
signal transmission at the synaptic level implies ion fluxes
through the plasma membranes of both pre- and post-
synaptic neurons that may have profound impact on neuro-
nal functions and viability independently of electrical signal
generation. A representative example is given by glutamate-
dependent excitotoxicity, consisting of hyper-activation of
calcium-permeable glutamate receptors (i.e. the N-methyl-D-
aspartate receptors [NMDAR]) that produce intracellular
calcium overload triggering pro-apototic pathways and lead-
ing to neuronal death [214, 215].

Virus and Synaptic Alterations

Viruses have been reported to significantly affect
the synaptic function.

HIV HIV-1 infection induces a progressive loss of synaptic
connections in the CNS that appears in the early phases of
the HAD pathology and correlates with the progression of
the disease [216, 217]. In vivo studies demonstrated that
some viral proteins are directly involved in these effects:
mice engineered to express gp120 in astrocytes under an
astrocyte-specific promoter show reduction of presynaptic
terminals and dendrites in the CNS [218], whereas mice
selectively expressing gp160 (the gp120 and gp141 hetero-
dimers) in neurons exhibit synaptic dysfunctions [219].
Reportedly, gp120 induces synaptic damage through indi-
rect and direct mechanisms involving NMDAR activation.
Its indirect action is primarily mediated by soluble factors
released from glial cells upon gp120 treatment [220–225].
In particular, gp120 activation of macrophages and micro-
glia induces glutamate-related hyper-activation of NMDAR,
with consequent ER stress and Ca2+ release [226]. Direct
effects of gp120 on NMDA-evoked calcium influx involve
modifications in the spatial location and density of
NMDAR, possibly mediated by alterations of the biophys-
ical properties of neuronal membranes induced by the viral
protein that stabilizes the structure of lipid microdomains
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containing the receptor. This effect, together with gp-120-
induced PKA- and PKC-dependent phosphorylation of
NMDAR, results in a perturbation of the surface expression
and spatial location of NMDARs [227].

NMDARs are also activated by the viral protein Tat [228,
229], resulting in Ca2+ rise [226, 230, 231] that in turn
activates neuronal nitric oxide synthase (nNOS) leading to
cell death [197]. Tat also affects neuronal dendritic struc-
tures causing proteasome-mediated degradation of
microtubule-associated protein 2 (MAP2) and the collapse
of cytoskeletal filaments [232]. Kim et al. [233] hypothe-
sized that these effects, rather than the neuronal death, could
account for the impaired synaptic plasticity observed in
neural networks exposed to Tat [234]. Consistently, they
found that the impaired network function and the decreased
neuronal survival produced by Tat, both effects induced by
LRP-dependent activation of NMDARs, result from distinct
mechanisms that are mediated by the ubiquitin-proteasoma
pathway and nNOS activation, respectively.

Influenza Virus Influenza virus A nucleoprotein NP has also
been shown to affect synaptic functions: rat hippocampal
neurons exposed to recombinant NP, fused to 11–amino acid
peptide transduction domain (PTD) of TAT, showed distur-
bances in postsynaptic functions, documented by reduced
frequency and amplitude of the miniature excitatory
postsynaptic currents. The authors hypothesized that the
viral NP that localized in dendritic spinelike processes
interferes with the expression or anchoring of postsyn-
aptic glutamate receptors thereby disturbing synaptic
functions [235].

HSV-1 Besides being specific target of viral proteins, syn-
apses also represent a route through which viruses may
travel between neurons, as this is the case of HSV-1
[236]. Consistently, nectin proteins, among which nectin-
1 and nectin-2 that are used by HSV as virus entry and
cell–cell spread mediator [237–240] have been involved
in synapse formation [241]. We found that HSV-1 binding
to neuronal membrane markedly affected the electrophys-
iological properties of rat cortical neurons and enhanced
their excitability [106]. This effect consisted of persistent
Na+ channel activation and K+ current inhibition leading
to membrane depolarization and increased neuronal firing.
Voltage-gated Ca2+ channel were consequently activated
thus triggering intracellular Ca2+ signals raising the basal
intracellular Ca2+ levels. Calcium signals potently promot-
ed APP phosphorylation and processing with consequent
intracellular and extracellular accumulation of several neu-
rotoxic fragments including Aβ oligomers [106, 107].
These virus-induced APP fragments might induce synaptic
dysfunction resembling that underlying the cognitive def-
icits observed in AD.

Apoptosis

Neuronal cell death by apoptosis, a highly organised process
characterized by chromatin condensation, shrinkage of the
nucleus and cytoplasm, DNA fragmentation and disintegra-
tion of the cell into small apoptotic bodies that are destined
to be phagocytized [242], underlies the symptoms of many
neurodegenerative diseases. Apoptotic death of hippocam-
pal and cortical neurons results in AD symptoms such as
memory loss and cognitive decline; the death of dopaminer-
gic neurons and the consequent apoptosis of midbrain neu-
rons that use dopamine as a neurotransmitter lead to the
characteristic tremors of PD; the loss of striatal neurons that
control body movements characterizes HD; apoptosis of
motor neurons in the spinal cord is responsible for the
manifestations of ALS.

Several neurotropic viruses induce apoptosis in neural
cells and these effects can contribute to the pathogenesis
of the virus-induced disease. Other viruses prevent apoptotic
death of host cells in order to estabilish a persistent infec-
tion. On the other hand, programmed cell death may also be
used by the host as a non-inflammatory response aimed at
removing the virus. Thus, the fate of infected cells depends
on a complex network of interactions between a virus and its
host cell, which has yet to be fully delucitated.

HSV-1

During strong and acute infection, such as occurs in HSE,
HSV-1 induces neuronal cell death, although apoptosis does
not occur during later sequelae even when inflammation is
still present [243], and is likely the cause of long-term
entorhinal cortex and hippocampal cell loss along with
memory deficits in mice [244]. Additionally, encephalitic
HSV-1 has been reported to induce apoptosis in hippocam-
pal neurons through the activation of JNK pathways [245].
On the other hand, the presence of HSV-1 DNA in many
healthy brains [11] suggests that the virus does not neces-
sarily provoke cell death in cerebral tissue. In this regard,
viral latency-associated transcript (LAT) has been reported
to inhibit apoptosis [246], particularly by blocking the two
major mammalian apoptotic pathways, i.e. the extrinsic
apoptotic pathway and the intrinsic pathway [247–249], to
promote neurite sprouting in neuroblastoma cells and to
protect C1300 and N2A cells from killing by CD8 T lym-
phocytes in vitro [250, 251].

Based on these findings and others showing that LAT
play a key role in the HSV-1 latency-reactivation cycle
[252–254], the authors proposed that by preserving latently
infected neurons from apoptotic cell death, it supports HSV-
1 reactivation rates and spread into neuronal tissue. Viral
protein expressed during productive infection with HSV-1
can also induce or inhibit apoptosis in a cell type-dependent
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manner following the infection of cultured cells [255–259].
In particular, experiments performed with genetically mod-
ified viruses showed that the apoptotic pathway induced by
HSV-1 in neuronal cells within the first hour of infection
could be blocked at multiple steps of the viral replicative
cycle. The viral proteins synthesized between 3 and 6 h
post-infection [260] and also some viral glycoproteins such
as glycoproteins D and J, which are involved in the virus
entry, have a role in this suppression of apoptosis in HSV-1-
infected neuronal cells [261]. Moreover, the R1 subunit of
viral ribonucleotide reductase inhibits apoptosis in hippo-
campal neurons and in differentiated PC12 cells through
upregulation of the anti-apoptotic protein Bag-1 expression
and activation of the ERK and Ras/MEK/MAPK pathways
[262, 263].

In agreement with these findings, we also were unable to
detect apoptotic markers in HSV-1-infected rat cortical neu-
rons up to 24 h p.i.. However, when we challenged primary
rat cortical neurons with the supernatants of neuroblastoma
cells infected with HSV-1 in the presence or absence of β-
and γ-secretase inhibitors, we found that infected-culture
supernatants triggered apoptosis in these cells, even when
the cultures were exposed to UV light, which inactivates the
virus they contain. The infected supernatants obtained in the
presence of β- and γ-secretase inhibitors exhibited much
lower neurotoxicity. These findings suggest that superna-
tants of HSV-1-infected cells are highly neurotoxic for pri-
mary neurons, and that this effect is related to the presence
of virus-induced APP fragments released into the extracel-
lular medium rather than to the presence of “active” viral
particles [107]. Nevertheless, they indicate an apoptotic
pathway indirectly activated by the virus and mediated
mainly by virus-induced Aβ peptides. Carter [264]
addresses the hypothesis that activation of the immune
system by other pathogens, i.e. those implicated in AD
(e.g. Helicobacter pylori, C. pneumoniae and others [265])
might disturb the fragile balance between HSV-1-and host
neuronal cells, allowing viral destruction, but causing neu-
ronal loss. Activation of the immune system thus appears to
be a potent inducer of neuronal death via inflammatory
mediators [266].

C. pneumoniae

C. pneumoniae has been reported to inhibit the apoptotic
process following infection in different celly types, includ-
ing neutrophils [267], monocytes and epithelial cells
[268–271], microglial cells [124] and neuronal cells [272].
When the latter were infected with C. pneumoniae, they
appeared resistant to staurosporine-induced apoptosis. In
particular, C. pneumoniae infection downregulated pro-
apoptotic cytoplasmic proteins such as cytochrome c re-
leased from mithocondria and activated caspase-3/7, which

are normally upregulated following staurosporine treatment.
However, considering that they detected C. pneumoniae in
AD brains [8, 273, 274], the authors hypothesized that, as
for other cell types [275], this bacterium could both inhibit
apoptosis and promote neuronal death by necrosis. This
could also account for the inflammatory process activated
by the pathogen. The ability of C. pneumoniae to inhibit the
apoptotic process could result in chronic or prolonged in-
fection in the CNS that, by promoting amyloidogenesis and
neuroinflammation, may contribute to the neuropathogene-
sis of AD.

HIV

HIV infection reportedly induces apoptosis and neuronal
loss in the CNS [276–279], but the mechanisms underlying
these events have yet to be clarified. Multiple viral proteins,
including gp120 and tat, have been involved in virus-
induced neuronal loss. Cell death similar to that described
in the brains of HAD patients has been detected in cerebral
regions of transgenic mice expressing gp120, suggesting
that the HIV glycoprotein is able to induce apoptosis alone
[218]. A large body of evidence supports this notion, show-
ing that gp120 causes degeneration and death of several
types of neurons maintained in culture. However, it is still
unknown whether gp120 is able to induce neuronal apopto-
sis directly or indirectly. Some findings support the hypoth-
esis that gp120 infects infiltrating macrophages and
lymphocytes, causing the release of pro-inflammatory and
neurotoxic cytokines, such as IL-6, thus damaging sensory
neurons and producing neuropathies [280]. Other data sup-
port the hypothesis that gp120 may interact directly with
neurons, which indeed express both the gp120 co-receptors
CXCR4 and CCR5 [281, 282]. In particular, gp-120-
induced apoptosis has been demonstrated to be mediated
mainly following its interaction with CXCR4 [283, 284], as
demonstrated both in vivo and in vitro studies. For example,
treatment of cultured human or rat neurons with gp120 leads
to neuronal apoptosis [285–288] and intracerebroventricular
injection of HIV-1 gp120 in rats produces apoptotic neuro-
nal death in vivo [289–291].

Tat, a transactivating nuclear regulatory protein that is
critical for viral replication, is released by infected macro-
phages and microglia and can be taken up by neighbouring
cells, including neurons, where it can express its pro-
apoptotic potential [292]. This action is inhibited by neuro-
trophic factors, including brain-derived neurotrophic factor
(BDNF) and nerve growth factor [292], which activate the
transcription factor NF-kB and upregulate the expression of
the anti-apoptotic protein Bcl-2. Interestingly, long-term
incubation of Tat in cultured PC12 cells causes decreased
expression and activity of the transcription factor CREB,
which in turn plays a key role in neuronal survival through
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the upregulation of BDNF [293]. Thus neurotoxic HIV
proteins are able to activate pro-apoptotic cascades and to
inhibit pro-survival pathways. However, together with other
neurotoxic viral proteins such as Vpr, gp140 and Nef
[294–296], other endogenous factors released from infected
cells, especially macrophages, contribute to HIV-induced
neuronal apoptosis, including excitatory amino acids, NO,
MMPs and proinflammatory cytokines such as TNF-a and
SDF-1 [297–299]. Moreover, in HIV-1-infected patients that
are also drug abusers, the activation of opioid receptors,
widely expressed by astrocytes and astrocyte precursors,
can induce apoptosis, thus combining with the viral effects
to accelerate the progression of HAD.

Influenza Virus

The influenza virus is also known to induce apoptosis in
infected cells through other mechanisms. Among these, we
previously demonstrated that in neurons, influenza virus
activates the mitochondrial (intrinsic) apoptotic pathway
through p38MAPK-mediated phosphorylation of Bcl-2
[163]. The interaction between Bcl-2 and this kinase dimin-
ishes the ability of Bcl-2 to prevent the cell undergoing
virally induced apoptosis, but it also reduces the ability of
the virus to replicate effectively. The immediate result is
programmed death of infected cells and the release of a
relatively low number of infective virions. These data let
us hypothesize that despite the low virus replication of
neuronal cells [172] the apoptotic signals activated by the
virus, may contribute to the onset of neurodegeneration.

It has previously been reported that the avian H5N1
type of influenza A virus can be detected in neurons and
astrocytes of human brains at autopsy [300, 301]. Recent-
ly, Ng et al. [302] demonstrated that the H5N1 virus
can infect human astrocytic and neuronal cells, resulting
in the induction of direct cellular damage and pro-
inflammatory cytokine cascades. Indeed, increased ex-
pression of IL-6 and/or TNF-α mRNA was detected in
both astrocytic and neuronal cells (human glioblastoma
and neuroblastoma cells) at 6 and 24 h p.i.. TNF-a treatment
induced apoptosis, as well as pro-inflammatory cyto-
kine, chemokine and inflammatory responses in differ-
entiated cells.

The recent immunohistochemical study in PD per-
formed by Rhon and Catlin [303] revealed that the pres-
ence of influenza virus within the SNpc in post-mortem
PD brain sections was associated with apoptotic oligo-
dendrocytes labelled by the Beclin-1 caspase-cleavage
product antibody (BeclinCCP) in the white matter of the
SN of PD and DLB (dementia with Lewy body) patients.
Many of the oligodendrocytes labelled with the
BeclinCCP antibody displayed hallmark features of apo-
ptosis, including fragmentation of processes and shrunken
cell bodies. This degeneration of oligodendrocytes, which
are known to play a key role in the myelination of axons
in the CNS, may contribute to the extrapyramidal symp-
toms associated with PD.

Apoptosis has also been identified in the brains of influenza
encephalopathy and encephalitis patients [304]. Microglial
cells were markedly increased in TUNEL-positive influenza

Fig. 7 Molecular hallmarks of
neurodegeneration induced by
infectious agents in neurons of
the central nervous system (for
further details, see text)
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encephalopathy and encephalitis brains compared with
TUNEL-negative brains. Immunoreactivity for active-
caspase 3, demonstrated by immunohistochemistry, and the
overexpression of a caspase-cleaved fragment of poly(ADP-
ribose) polymerase, indicated that activation of caspase 3 is
involved in the apoptotic pathway in the brains of influenza
encephalopathy patients.

Conclusions

Advances in microbiological research have led to in-
depth understanding of the structure and replication
mechanisms of several pathogens, as well as of their
interactions with host cells. However, a growing body
of evidence suggests that when an infectious agent rea-
ches sites different from those of its primary replication it
may produce mild infections that eventually cause addi-
tional and unexpected effects. This is the case for persis-
tent CNS infections caused by continuous pathogen
replications (e.g. HIV and C. pneumoniae infections),
repeated infections (e.g. influenza virus) or latent infec-
tions followed by life-long reactivations (as in the case of
HSV-1). Repeated cycles of pathogen replication within
the CNS produce functional and molecular hallmarks of
neurodegeneration, including protein misfolding, deposi-
tion of misfolded protein aggregates, alterations of auto-
phagic pathways, oxidative stress, neuronal functional
alterations and apoptotic cell death (Fig. 7). These effects
accumulate over time, thus contributing to neurodegener-
ation. The pathogen-induced effects add to and are possibly
amplified by several factors such as metabolic disorders,
genetic alterations and other environmental risk factors,
involved in the pathogenesis of neurodegenerative diseases.
As a result, the pathogen-induced damage amplifies and
accelerates the neurodegenerative process, whose signs are
usually manifested during aging.

The data reviewed in our paper suggest that more detailed
understanding of the molecular mechanisms underlying
pathogen-mediated neuronal damage may pave the way to the
identification of new preventive and/or therapeutic strategies
aimed at counteracting the progression of these devastating
pathologies.
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