220 research outputs found

    The evaluation of renal ischaemic damage: the value of CD10 monoclonal antibody staining and of biochemical assessments of tissue viability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well recognised that there is often a disparity between the structural changes observed in the kidney following renal injury and the function of the organ. For this reason, we carried out studies to explore possible means of studying and quantifying the severity of renal ischaemic damage using a laboratory model.</p> <p>Methods</p> <p>To do this, freshly isolated rabbit kidney tissue was subjected to warm (37°C) or cold (1°C) ischaemia for 20 hours. Following this, the tissue was stained using Haematoxylin and Eosin (H+E), Periodic Schiff reagent (PAS) and the novel monoclonal antibody CD10 stain. Additionally, ischaemic damage to the kidneys was assessed by biochemical tests of tissue viability using formazan-based colorimetry.</p> <p>Results</p> <p>CD 10 antibody intensely stained the brush border of control kidney tissue with mild or no cytoplasmic staining. Cell injury was accompanied by a redistribution of CD10 into the lumen and cell cytoplasm. There was good correlation between a score of histological damage using the CD 10 monoclonal antibody stain and the biochemical assessment of viability. Similarly, a score of histological damage using traditional PAS staining correlated well with that using the CD10 antibody stain.</p> <p>In particular, the biochemical assay and the monoclonal antibody staining techniques were able to demonstrate the efficacy of Soltran (this solution is used cold to preserve freshly isolated human kidneys prior to transplantation) in preserving renal tissue at cold temperatures compared to other randomly selected solutions.</p> <p>Conclusion</p> <p>We conclude that the techniques described using the CD10 monoclonal antibody stain may be helpful in the diagnosis and assessment of ischaemic renal damage. In addition, biochemical tests of viability may have an important role in routine histopathological work by giving additional information about cellular viability which may have implications on the function of the organ.</p

    Deriving utility scores for co-morbid conditions: a test of the multiplicative model for combining individual condition scores

    Get PDF
    BACKGROUND: The co-morbidity of health conditions is becoming a significant health issue, particularly as populations age, and presents important methodological challenges for population health research. For example, the calculation of summary measures of population health (SMPH) can be compromised if co-morbidity is not taken into account. One popular co-morbidity adjustment used in SMPH computations relies on a straightforward multiplicative combination of the severity weights for the individual conditions involved. While the convenience and simplicity of the multiplicative model are attractive, its appropriateness has yet to be formally tested. The primary objective of the current study was therefore to examine the empirical evidence in support of this approach. METHODS: The present study drew on information on the prevalence of chronic conditions and a utility-based measure of health-related quality of life (HRQoL), namely the Health Utilities Index Mark 3 (HUI3), available from Cycle 1.1 of the Canadian Community Health Survey (CCHS; 2000–01). Average HUI3 scores were computed for both single and co-morbid conditions, and were also purified by statistically removing the loss of functional health due to health problems other than the chronic conditions reported. The co-morbidity rule was specified as a multiplicative combination of the purified average observed HUI3 utility scores for the individual conditions involved, with the addition of a synergy coefficient s for capturing any interaction between the conditions not explained by the product of their utilities. The fit of the model to the purified average observed utilities for the co-morbid conditions was optimized using ordinary least squares regression to estimate s. Replicability of the results was assessed by applying the method to triple co-morbidities from the CCHS cycle 1.1 database, as well as to double and triple co-morbidities from cycle 2.1 of the CCHS (2003–04). RESULTS: Model fit was optimized at s = .99 (i.e., essentially a straightforward multiplicative model). These results were closely replicated with triple co-morbidities reported on CCHS 2000–01, as well as with double and triple co-morbidities reported on CCHS 2003–04. CONCLUSION: The findings support the simple multiplicative model for computing utilities for co-morbid conditions from the utilities for the individual conditions involved. Future work using a wider variety of conditions and data sources could serve to further evaluate and refine the approach

    Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    Get PDF
    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD

    Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses

    Full text link
    BACKGROUND Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11–q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes. Prostate 70: 735–744, 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71371/1/21106_ftp.pd

    Learning, Memory, and the Role of Neural Network Architecture

    Get PDF
    The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems

    Prospectively Isolated Cancer-Associated CD10+ Fibroblasts Have Stronger Interactions with CD133+ Colon Cancer Cells than with CD133− Cancer Cells

    Get PDF
    Although CD133 has been reported to be a promising colon cancer stem cell marker, the biological functions of CD133+ colon cancer cells remain controversial. In the present study, we investigated the biological differences between CD133+ and CD133− colon cancer cells, with a particular focus on their interactions with cancer-associated fibroblasts, especially CD10+ fibroblasts. We used 19 primary colon cancer tissues, 30 primary cultures of fibroblasts derived from colon cancer tissues and 6 colon cancer cell lines. We isolated CD133+ and CD133− subpopulations from the colon cancer tissues and cultured cells. In vitro analyses revealed that the two populations showed similar biological behaviors in their proliferation and chemosensitivity. In vivo analyses revealed that CD133+ cells showed significantly greater tumor growth than CD133− cells (P = 0.007). Moreover, in cocultures with primary fibroblasts derived from colon cancer tissues, CD133+ cells exhibited significantly more invasive behaviors than CD133− cells (P<0.001), especially in cocultures with CD10+ fibroblasts (P<0.0001). Further in vivo analyses revealed that CD10+ fibroblasts enhanced the tumor growth of CD133+ cells significantly more than CD10− fibroblasts (P<0.05). These data demonstrate that the in vitro invasive properties and in vivo tumor growth of CD133+ colon cancer cells are enhanced in the presence of specific cancer-associated fibroblasts, CD10+ fibroblasts, suggesting that the interactions between these specific cell populations have important roles in cancer progression. Therefore, these specific interactions may be promising targets for new colon cancer therapies

    Discovery of T Cell Antigens by High-Throughput Screening of Synthetic Minigene Libraries

    Get PDF
    The identification of novel T cell antigens is central to basic and translational research in autoimmunity, tumor immunology, transplant immunology, and vaccine design for infectious disease. However, current methods for T cell antigen discovery are low throughput, and fail to explore a wide range of potential antigen-receptor interactions. To overcome these limitations, we developed a method in which programmable microarrays are used to cost-effectively synthesize complex libraries of thousands of minigenes that collectively encode the content of hundreds of candidate protein targets. Minigene-derived mRNA are transfected into autologous antigen presenting cells and used to challenge complex populations of purified peripheral blood CD8+ T cells in multiplex, parallel ELISPOT assays. In this proof-of-concept study, we apply synthetic minigene screening to identify two novel pancreatic islet autoantigens targeted in a patient with Type I Diabetes. To our knowledge, this is the first successful screen of a highly complex, synthetic minigene library for identification of a T cell antigen. In principle, responses against the full protein complement of any tissue or pathogen can be assayed by this approach, suggesting that further optimization of synthetic libraries holds promise for high throughput antigen discovery

    Expression of cell cycle proteins in male breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Male breast cancer (MBC) is a rare, yet potentially aggressive disease. Although literature regarding female breast cancer (FBC) is extensive, little is known about the etiopathogenesis of male breast cancer. Studies from our laboratory show that MBCs have a distinct immunophenotypic profile, suggesting that the etiopathogenesis of MBC is different from FBCs. The aim of this study was to evaluate and correlate the immunohistochemical expression of cell cycle proteins in male breast carcinoma to significant clinico-biological endpoints.</p> <p>Methods</p> <p>75 cases of MBC were identified using the records of the Saskatchewan Cancer Agency over 26 years (1970-1996). Cases were reviewed and analyzed for the immunohistochemical expression of PCNA, Ki67, p27, p16, p57, p21, cyclin-D1 and c-myc and correlated to clinico-biological endpoints of tumor size, node status, stage of the disease, and disease free survival (DFS).</p> <p>Results</p> <p>Decreased DFS was observed in the majority of tumors that overexpressed PCNA (98%, p = 0.004). The overexpression of PCNA was inversely correlated to the expression of Ki67 which was predominantly negative (78.3%). Cyclin D1 was overexpressed in 83.7% of cases. Cyclin D1 positive tumors were smaller than 2 cm (55.6%, p = 0.005), had a low incidence of lymph node metastasis (38.2%, p = 0.04) and were associated with increased DFS of >150 months (p = 0.04). Overexpression of c-myc (90%) was linked with a higher incidence of node negativity (58.3%, p = 0.006) and increased DFS (p = 0.04). p27 over expression was associated with decreased lymph node metastasis (p = 0.04). P21 and p57 positive tumors were related to decreased DFS (p = 0.04). Though p16 was overexpressed in 76.6%, this did not reach statistical significance with DFS (p = 0.06) or nodal status (p = 0.07).</p> <p>Conclusion</p> <p>Aberrant cell cycle protein expression supports our view that these are important pathways involved in the etiopathogenesis of MBC. Tumors with overexpression of Cyclin D1 and c-myc had better outcomes, in contrast to tumors with overexpression of p21, p57, and PCNA with significantly worse outcomes. P27 appears to be a predictive marker for lymph nodal status. Such observation strongly suggests that dysregulation of cell cycle proteins may play a unique role in the initiation and progression of disease in male breast cancer. Such findings open up new avenues for the treatment of MBC as a suitable candidate for novel CDK-based anticancer therapies in the future.</p

    PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro

    Get PDF
    Abstract Introduction Alterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines. Methods Forty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response. Results Cell lines representing luminal estrogen receptor-positive (ER+) subtype (including those that are HER2 amplified) were most sensitive to growth inhibition by PD 0332991 while nonluminal/basal subtypes were most resistant. Analysis of variance identified 450 differentially expressed genes between sensitive and resistant cells. pRb and cyclin D1 were elevated and CDKN2A (p16) was decreased in the most sensitive lines. Cell cycle analysis showed G0/G1 arrest in sensitive cell lines and Western blot analysis demonstrated that Rb phosphorylation is blocked in sensitive lines but not resistant lines. PD 0332991 was synergistic with tamoxifen and trastuzumab in ER+ and HER2-amplified cell lines, respectively. PD 0332991 enhanced sensitivity to tamoxifen in cell lines with conditioned resistance to ER blockade. Conclusions These studies suggest a role for CDK4/6 inhibition in some breast cancers and identify criteria for patient selection in clinical studies of PD 0332991
    • …
    corecore