75 research outputs found

    Antigenic, Immunologic and Genetic Characterization of Rough Strains B.abortus RB51, B.melitensis B115 and B.melitensis B18

    Get PDF
    The lipopolysaccharide (LPS) is considered the major virulent factor in Brucella spp. Several genes have been identified involved in the synthesis of the three LPS components: lipid A, core and O-PS. Usually, Brucella strains devoid of O-PS (rough mutants) are less virulent than the wild type and do not induce undesirable interfering antibodies. Such of them proved to be protective against brucellosis in mice. Because of these favorable features, rough strains have been considered potential brucellosis vaccines. In this study, we evaluated the antigenic, immunologic and genetic characteristics of rough strains B.abortus RB51, B.melitensis B115 and B.melitensis B18. RB51 derived from B.abortus 2308 virulent strain and B115 is a natural rough strain in which the O-PS is present in the cytoplasm. B18 is a rough rifampin-resistan mutant isolated in our laboratory

    Combining Computational Prediction of Cis-Regulatory Elements with a New Enhancer Assay to Efficiently Label Neuronal Structures in the Medaka Fish

    Get PDF
    The developing vertebrate nervous system contains a remarkable array of neural cells organized into complex, evolutionarily conserved structures. The labeling of living cells in these structures is key for the understanding of brain development and function, yet the generation of stable lines expressing reporter genes in specific spatio-temporal patterns remains a limiting step. In this study we present a fast and reliable pipeline to efficiently generate a set of stable lines expressing a reporter gene in multiple neuronal structures in the developing nervous system in medaka. The pipeline combines both the accurate computational genome-wide prediction of neuronal specific cis-regulatory modules (CRMs) and a newly developed experimental setup to rapidly obtain transgenic lines in a cost-effective and highly reproducible manner. 95% of the CRMs tested in our experimental setup show enhancer activity in various and numerous neuronal structures belonging to all major brain subdivisions. This pipeline represents a significant step towards the dissection of embryonic neuronal development in vertebrates

    Sexually Dimorphic Serotonergic Dysfunction in a Mouse Model of Huntington's Disease and Depression

    Get PDF
    Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT) and the forced-swimming test (FST). The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2) mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice

    Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target

    Get PDF
    BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD

    Increasing vegetable intakes: rationale and systematic review of published interventions

    Get PDF
    Purpose While the health benefits of a high fruit and vegetable consumption are well known and considerable work has attempted to improve intakes, increasing evidence also recognises a distinction between fruit and vegetables, both in their impacts on health and in consumption patterns. Increasing work suggests health benefits from a high consumption specifically of vegetables, yet intakes remain low, and barriers to increasing intakes are prevalent making intervention difficult. A systematic review was undertaken to identify from the published literature all studies reporting an intervention to increase intakes of vegetables as a distinct food group. Methods Databases—PubMed, PsychInfo and Medline—were searched over all years of records until April 2015 using pre-specified terms. Results Our searches identified 77 studies, detailing 140 interventions, of which 133 (81 %) interventions were conducted in children. Interventions aimed to use or change hedonic factors, such as taste, liking and familiarity (n = 72), use or change environmental factors (n = 39), use or change cognitive factors (n = 19), or a combination of strategies (n = 10). Increased vegetable acceptance, selection and/or consumption were reported to some degree in 116 (83 %) interventions, but the majority of effects seem small and inconsistent. Conclusions Greater percent success is currently found from environmental, educational and multi-component interventions, but publication bias is likely, and long-term effects and cost-effectiveness are rarely considered. A focus on long-term benefits and sustained behaviour change is required. Certain population groups are also noticeably absent from the current list of tried interventions

    Cardiovasc Diabetol

    Get PDF
    Lower-extremity arterial disease (LEAD) is a major endemic disease with an alarming increased prevalence worldwide. It is a common and severe condition with excess risk of major cardiovascular events and death. It also leads to a high rate of lower-limb adverse events and non-traumatic amputation. The American Diabetes Association recommends a widespread medical history and clinical examination to screen for LEAD. The ankle brachial index (ABI) is the first non-invasive tool recommended to diagnose LEAD although its variable performance in patients with diabetes. The performance of ABI is particularly affected by the presence of peripheral neuropathy, medial arterial calcification, and incompressible arteries. There is no strong evidence today to support an alternative test for LEAD diagnosis in these conditions. The management of LEAD requires a strict control of cardiovascular risk factors including diabetes, hypertension, and dyslipidaemia. The benefit of intensive versus standard glucose control on the risk of LEAD has not been clearly established. Antihypertensive, lipid-lowering, and antiplatelet agents are obviously worthfull to reduce major cardiovascular adverse events, but few randomised controlled trials (RCTs) have evaluated the benefits of these treatments in terms of LEAD and its related adverse events. Smoking cessation, physical activity, supervised walking rehabilitation and healthy diet are also crucial in LEAD management. Several advances have been achieved in endovascular and surgical revascularization procedures, with obvious improvement in LEAD management. The revascularization strategy should take into account several factors including anatomical localizations of lesions, medical history of each patients and operator experience. Further studies, especially RCTs, are needed to evaluate the interest of different therapeutic strategies on the occurrence and progression of LEAD and its related adverse events in patients with diabetes

    Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Get PDF
    We performed a multistage genome-wide association study (GWAS) including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT; per-allele odds ratio [OR] = 0.79; 95% confidence interval [CI] = 0.74–0.84; P = 3.0×10−12), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2; OR = 1.46; 95% CI = 1.30–1.65; P = 1.1×10−10), rs9581943 at 13q12.2 (PDX1; OR = 1.15; 95% CI = 1.10–1.20; P = 2.4×10−9), and rs16986825 at 22q12.1 (ZNRF3; OR = 1.18; 95% CI = 1.12–1.25; P = 1.2×10−8). An independent signal was identified in exon 2 of TERT at the established region 5p15.33 (rs2736098; OR = 0.80; 95% CI = 0.76–0.85; P = 9.8×10−14). We also identified a locus at 8q24.21 (rs1561927; P = 1.3×10−7) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study has identified multiple new susceptibility alleles for pancreatic cancer worthy of follow-up studies

    Activity Limits of Heterogeneous Polymerization Catalysts

    No full text

    Fundamental questions to sun protection: A continuous education symposium on vitamin D, immune system and sun protection at the University of Zürich

    No full text
    Since exposure to sunlight is a main factor in the development of non-melanoma skin cancer and there are associations between malignant melanoma and short-term intense ultraviolet (UV) exposure, particularly burning in childhood, strict protection from UV-radiation is recommended. However, up to 90% of all requisite vitamin D has to be formed within the skin through the action of the sun—a serious problem, for a connection between vitamin D deficiency, demonstrated in epidemiological studies, and various types of cancer and other diseases has been confirmed. A UVB-triggered skin autonomous vitamin D3 synthesis pathway has recently been described, producing the active Vitamin D metabolite calcitriol. This cutaneous vitamin D3 pathway is unique. Keratinocytes and dendritic cells can convert vitamin D to calcitriol. Cutaneous T cells activated in the presence of calcitriol express the chemokine receptor CCR10 attracting them to the chemokine CCL27 that keratinocytes express selectively in the epidermis, and migrate from dermal layers of the skin to the epidermis under UV radiation. Thus, calcitriol has endocrine roles beyond its calciotropic action, including cell growth and cancer prevention. Therefore, strict sun protection procedures to prevent skin cancer may induce the risk of vitamin D deficiency. As there is evidence that the protective effect of less intense solar radiation can outweigh its mutagenic effect, better balanced approaches to sun protection should be sought
    • …
    corecore