18 research outputs found

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    Deep Echo State Networks in Industrial Applications

    No full text
    This paper analyzes the impact of reservoir computing, and, in particular, of Deep Echo State Networks, to the modeling of highly non-linear dynamical systems that can be commonly found in the industry. Several applications are presented focusing on forecasting models related to energy content of steelwork byproduct gasses. Deep Echo State Network models are trained, validated and tested by exploiting datasets coming from a real industrial context, with good results in terms of accuracy of the predictions
    corecore