268 research outputs found

    Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar es Salaam, Tanzania.

    Get PDF
    BACKGROUND\ud \ud Malaria transmission in Africa occurs predominantly inside houses where the primary vectors prefer to feed. Human preference and investment in blocking of specific entry points for mosquitoes into houses was evaluated and compared with known entry point preferences of the mosquitoes themselves.\ud \ud METHODS\ud \ud Cross-sectional household surveys were conducted in urban Dar es Salaam, Tanzania to estimate usage levels of available options for house proofing against mosquito entry, namely window screens, ceilings and blocking of eaves. These surveys also enabled evaluation of household expenditure on screens and ceilings and the motivation behind their installation.\ud \ud RESULTS\ud \ud Over three quarters (82.8%) of the 579 houses surveyed in Dar es Salaam had window screens, while almost half (48.9%) had ceilings. Prevention of mosquito entry was cited as a reason for installation of window screens and ceilings by 91.4% (394/431) and 55.7% (127/228) of respondents, respectively, but prevention of malaria was rarely cited (4.3%, 22/508). The median cost of window screens was between US 2130whilethatofceilingswasbetweenUS 21-30 while that of ceilings was between US 301-400. The market value of insecticide-treated nets, window screening and ceilings currently in use in the city was estimated as 2, 5 and 42 million US$. More than three quarters of the respondents that lacked them said it was too expensive to install ceilings (82.2%) or window screens (75.5%).\ud \ud CONCLUSION\ud \ud High coverage and spending on screens and ceilings implies that these techniques are highly acceptable and excellent uptake can be achieved in urban settings like Dar es Salaam. Effective models for promotion and subsidization should be developed and evaluated, particularly for installation of ceilings that prevent entry via the eaves, which are the most important entry point for mosquitoes that cause malaria, a variety of neglected tropical diseases and the nuisance which motivates uptake

    Do topical repellents divert mosquitoes within a community? Health equity implications of topical repellents as a mosquito bite prevention tool.

    Get PDF
    OBJECTIVES: Repellents do not kill mosquitoes--they simply reduce human-vector contact. Thus it is possible that individuals who do not use repellents but dwell close to repellent users experience more bites than otherwise. The objective of this study was to measure if diversion occurs from households that use repellents to those that do not use repellents. METHODS: The study was performed in three Tanzanian villages using 15%-DEET and placebo lotions. All households were given LLINs. Three coverage scenarios were investigated: complete coverage (all households were given 15%-DEET), incomplete coverage (80% of households were given 15%-DEET and 20% placebo) and no coverage (all households were given placebo). A crossover study design was used and coverage scenarios were rotated weekly over a period of ten weeks. The placebo lotion was randomly allocated to households in the incomplete coverage scenario. The level of compliance was reported to be close to 100%. Mosquito densities were measured through aspiration of resting mosquitoes. Data were analysed using negative binomial regression models. FINDINGS: Repellent-users had consistently fewer mosquitoes in their dwellings. In villages where everybody had been given 15%-DEET, resting mosquito densities were fewer than half that of households in the no coverage scenario (Incidence Rate Ratio [IRR]=0.39 (95% confidence interval [CI]: 0.25-0.60); p<0.001). Placebo-users living in a village where 80% of the households used 15%-DEET were likely to have over four-times more mosquitoes (IRR=4.17; 95% CI: 3.08-5.65; p<0.001) resting in their dwellings in comparison to households in a village where nobody uses repellent. CONCLUSIONS: There is evidence that high coverage of repellent use could significantly reduce man-vector contact but with incomplete coverage evidence suggests that mosquitoes are diverted from households that use repellent to those that do not. Therefore, if repellents are to be considered for vector control, strategies to maximise coverage are required

    Trends in Weekly Reported Net use by Children During and after Rainy Season in Central Tanzania.

    Get PDF
    The use of long-lasting insecticidal nets (LLINs) is one of the principal interventions to prevent malaria in young children, reducing episodes of malaria by 50% and child deaths by one fifth. Prioritizing young children for net use is important to achieve mortality reductions, particularly during transmission seasons. Households were followed up weekly from January through June 2009 to track net use among children under seven under as well as caretakers. Net use rates for children and caretakers in net-owning households were calculated by dividing the number of person-weeks of net use by the number of person-weeks of follow-up. Use was stratified by age of the child or caretaker status. Determinants of ownership and of use were assessed using multivariate models. Overall, 60.1% of the households reported owning a bed net at least once during the study period. Among net owners, use rates remained high during and after the rainy season. Rates of use per person-week decreased as the age of the child rose from 0 to six years old; at ages 0-23 months and 24-35 months use rates per person-week were 0.93 and 0.92 respectively during the study period, while for children ages 3 and 4 use rates per person-week were 0.86 and 0.80. For children ages 5-6 person-week ratios dropped to 0.55. This represents an incidence rate ratio of 1.67 for children ages 0-23 months compared to children aged 5-6. Caretakers had use rates similar to those of children age 0-35 months. Having fewer children under age seven in the household also appeared to positively impact net use rates for individual children. In this area of Tanzania, net use is very high among net-owning households, with no variability either at the beginning or end of the rainy season high transmission period. The youngest children are prioritized for sleeping under the net and caretakers also have high rates of use. Given the high use rates, increasing the number of nets available in the household is likely to boost use rates by older children

    Protective Efficacy of Menthol Propylene Glycol Carbonate Compared to N, N-diethyl-Methylbenzamide Against Mosquito Bites in Northern Tanzania.

    Get PDF
    The reduction of malaria parasite transmission by preventing human-vector contact is critical in lowering disease transmission and its outcomes. This underscores the need for effective and long lasting arthropod/insect repellents. Despite the reduction in malaria transmission and outcomes in Tanzania, personal protection against mosquito bites is still not well investigated. This study sought to determine the efficacy of menthol propylene glycol carbonate (MR08), Ocimum suave as compared to the gold standard repellent N, N-diethyl-methylbenzamide (DEET), either as a single dose or in combination (blend), both in the laboratory and in the field against Anopheles gambiae s.l and Culex quinquefasciatus. In the laboratory evaluations, repellents were applied on one arm while the other arm of the same individual was treated with a base cream. Each arm was separately exposed in cages with unfed female mosquitoes. Repellents were evaluated either as a single dose or as a blend. Efficacy of each repellent was determined by the number of mosquitoes that landed and fed on treated arms as compared to the control or among them. In the field, evaluations were performed by human landing catches at hourly intervals from 18:00  hr to 01:00  hr. A total of 2,442 mosquitoes were collected during field evaluations, of which 2,376 (97.30%) were An. gambiae s.l while 66 (2.70%) were Cx. quinquefaciatus. MR08 and DEET had comparatively similar protective efficacy ranging from 92% to 100 for both single compound and blends. These findings indicate that MR08 has a similar protective efficacy as DEET for personal protection outside bed nets when used singly and in blends. Because of the personal protection provided by MR08, DEET and blends as topical applicants in laboratory and field situations, these findings suggest that, these repellents could be used efficiently in the community to complement existing tools. Overall, Cx. quinquefasciatus were significantly prevented from blood feeding compared to An. gambiae s.l. The incorporation of these topical repellents for protection against insect bites can be of additional value in the absence or presence of IRS and ITNs coverage. However, a combination of both the physical (bed nets) and the repellent should be used in an integrated manner for maximum protection, especially before going to bed. Additional research is needed to develop repellents with longer duration of protection

    Spatial effects of mosquito bednets on child mortality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide treated nets (ITN) have been proven to be an effective tool in reducing the burden of malaria. Few randomized clinical trials examined the spatial effect of ITNs on child mortality at a high coverage level, hence it is essential to better understand these effects in real-life situation with varying levels of coverage. We analyzed for the first time data from a large follow-up study in an area of high perennial malaria transmission in southern Tanzania to describe the spatial effects of bednets on all-cause child mortality.</p> <p>Methods</p> <p>The study was carried out between October 2001 and September 2003 in 25 villages in Kilombero Valley, southern Tanzania. Bayesian geostatistical models were fitted to assess the effect of different bednet density measures on child mortality adjusting for possible confounders.</p> <p>Results</p> <p>In the multivariate model addressing potential confounding, the only measure significantly associated with child mortality was the bed net density at household level; we failed to observe additional community effect benefit from bed net coverage in the community.</p> <p>Conclusion</p> <p>In this multiyear, 25 village assessment, despite substantial known inadequate insecticide-treatment for bed nets, the density of household bed net ownership was significantly associated with all cause child mortality reduction. The absence of community effect of bednets in our study area might be explained by (1) the small proportion of nets which are treated with insecticide, and (2) the relative homogeneity of coverage with nets in the area. To reduce malaria transmission for both users and non-users it is important to increase the ITNs and long-lasting nets coverage to at least the present untreated nets coverage.</p

    Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.

    Get PDF
    The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures

    Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?

    Get PDF
    BACKGROUND\ud \ud The most common pesticide products for controlling malaria-transmitting mosquitoes combine two distinct modes of action: 1) conventional insecticidal activity which kills mosquitoes exposed to the pesticide and 2) deterrence of mosquitoes away from protected humans. While deterrence enhances personal or household protection of long-lasting insecticidal nets and indoor residual sprays, it may also attenuate or even reverse communal protection if it diverts mosquitoes to non-users rather than killing them outright.\ud \ud METHODS\ud \ud A process-explicit model of malaria transmission is described which captures the sequential interaction between deterrent and toxic actions of vector control pesticides and accounts for the distinctive impacts of toxic activities which kill mosquitoes before or after they have fed upon the occupant of a covered house or sleeping space.\ud \ud RESULTS\ud \ud Increasing deterrency increases personal protection but consistently reduces communal protection because deterrent sub-lethal exposure inevitably reduces the proportion subsequently exposed to higher lethal doses. If the high coverage targets of the World Health Organization are achieved, purely toxic products with no deterrence are predicted to generally provide superior protection to non-users and even users, especially where vectors feed exclusively on humans and a substantial amount of transmission occurs outdoors. Remarkably, this is even the case if that product confers no personal protection and only kills mosquitoes after they have fed.\ud \ud CONCLUSIONS\ud \ud Products with purely mosquito-toxic profiles may, therefore, be preferable for programmes with universal coverage targets, rather than those with equivalent toxicity but which also have higher deterrence. However, if purely mosquito-toxic products confer little personal protection because they do not deter mosquitoes and only kill them after they have fed, then they will require aggressive "catch up" campaigns, with behaviour change communication strategies that emphasize the communal nature of protection, to achieve high coverage rapidly

    Geographic Coincidence of Increased Malaria Transmission Hazard and Vulnerability Occurring at the Periphery of two Tanzanian Villages.

    Get PDF
    The goal of malaria elimination necessitates an improved understanding of any fine-scale geographic variations in transmission risk so that complementary vector control tools can be integrated into current vector control programmes as supplementary measures that are spatially targeted to maximize impact upon residual transmission. This study examines the distribution of host-seeking malaria vectors at households within two villages in rural Tanzania. Host-seeking mosquitoes were sampled from 72 randomly selected households in two villages on a monthly basis throughout 2008 using CDC light-traps placed beside occupied nets. Spatial autocorrelation in the dataset was examined using the Moran's I statistic and the location of any clusters was identified using the Getis-Ord Gi* statistic. Statistical associations between the household characteristics and clusters of mosquitoes were assessed using a generalized linear model for each species. For both Anopheles gambiae sensu lato and Anopheles funestus, the density of host-seeking females was spatially autocorrelated, or clustered. For both species, houses with low densities were clustered in the semi-urban village centre while houses with high densities were clustered in the periphery of the villages. Clusters of houses with low or high densities of An. gambiae s.l. were influenced by the number of residents in nearby houses. The occurrence of high-density clusters of An. gambiae s.l. was associated with lower elevations while An. funestus was also associated with higher elevations. Distance from the village centre was also positively correlated with the number of household occupants and having houses constructed with open eaves. The results of the current study highlight that complementary vector control tools could be most effectively targeted to the periphery of villages where the households potentially have a higher hazard (mosquito densities) and vulnerability (open eaves and larger households) to malaria infection

    Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis

    Get PDF
    ABSTRACT: BACKGROUND: Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. METHODS: Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. RESULTS: The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. CONCLUSIONS: The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measur

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes
    corecore