1,486 research outputs found

    Infant Rule Learning: Advantage Language, or Advantage Speech?

    Get PDF
    <div><p>Infants appear to learn abstract rule-like regularities (e.g., <em>la la da</em> follows an AAB pattern) more easily from speech than from a variety of other auditory and visual stimuli (Marcus et al., 2007). We test if that facilitation reflects a specialization to learn from speech alone, or from modality-independent communicative stimuli more generally, by measuring 7.5-month-old infants’ ability to learn abstract rules from sign language-like gestures. Whereas infants appear to easily learn many different rules from speech, we found that with sign-like stimuli, and under circumstances comparable to those of Marcus et al. (1999), hearing infants were able to learn an ABB rule, but not an AAB rule. This is consistent with results of studies that demonstrate lower levels of infant rule learning from a variety of other non-speech stimuli, and we discuss implications for accounts of speech-facilitation.</p> </div

    The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO

    Full text link
    The fully differential computation of the hadronic production cross section of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several differential distributions with their corresponding scale uncertainties are presented for the 8 TeV LHC. This is the first application of the method of non-linear mappings for NNLO differential calculations at hadron colliders.Comment: 27 pages, 13 figures, 1 lego plo

    Composite Higgs Search at the LHC

    Full text link
    The Higgs boson production cross-sections and decay rates depend, within the Standard Model (SM), on a single unknown parameter, the Higgs mass. In composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone boson from a strongly-interacting sector, additional parameters control the Higgs properties which then deviate from the SM ones. These deviations modify the LEP and Tevatron exclusion bounds and significantly affect the searches for the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced, which results in deterioration of the Higgs searches but the deviations of the Higgs couplings can also allow for an enhancement of the gluon-fusion production channel, leading to higher statistical significances. The search in the H to gamma gamma channel can also be substantially improved due to an enhancement of the branching fraction for the decay of the Higgs boson into a pair of photons.Comment: 32 pages, 16 figure

    Strong Double Higgs Production at the LHC

    Get PDF
    The hierarchy problem and the electroweak data, together, provide a plausible motivation for considering a light Higgs emerging as a pseudo-Goldstone boson from a strongly-coupled sector. In that scenario, the rates for Higgs production and decay differ significantly from those in the Standard Model. However, one genuine strong coupling signature is the growth with energy of the scattering amplitudes among the Goldstone bosons, the longitudinally polarized vector bosons as well as the Higgs boson itself. The rate for double Higgs production in vector boson fusion is thus enhanced with respect to its negligible rate in the SM. We study that reaction in pp collisions, where the production of two Higgs bosons at high pT is associated with the emission of two forward jets. We concentrate on the decay mode hh -> WW^(*)WW^(*) and study the semi-leptonic decay chains of the W's with 2, 3 or 4 leptons in the final states. While the 3 lepton final states are the most relevant and can lead to a 3 sigma signal significance with 300 fb^{-1} collected at a 14 TeV LHC, the two same-sign lepton final states provide complementary information. We also comment on the prospects for improving the detectability of double Higgs production at the foreseen LHC energy and luminosity upgrades.Comment: 54 pages, 26 figures. v2: typos corrected, a few comments and one table added. Version published in JHE

    A next-to-next-to-leading order calculation of soft-virtual cross sections

    Get PDF
    We compute the next-to-next-to-leading order (NNLO) soft and virtual QCD corrections for the partonic cross section of colourless-final state processes in hadronic collisions. The results are valid to all orders in the dimensional regularization parameter \ep. The dependence of the results on a particular process is given through finite contributions to the one and two-loop amplitudes. To evaluate the accuracy of the soft-virtual approximation we compare it with the full NNLO result for Drell-Yan and Higgs boson production via gluon fusion. We also provide a universal expression for the hard coefficient needed to perform threshold resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy.Comment: 25 pages, 4 figure

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape

    NLL soft and Coulomb resummation for squark and gluino production at the LHC

    Get PDF
    We present predictions of the total cross sections for pair production of squarks and gluinos at the LHC, including the stop-antistop production process. Our calculation supplements full fixed-order NLO predictions with resummation of threshold logarithms and Coulomb singularities at next-to-leading logarithmic (NLL) accuracy, including bound-state effects. The numerical effect of higher-order Coulomb terms can be as big or larger than that of soft-gluon corrections. For a selection of benchmark points accessible with data from the 2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive squark and gluino production cross section in the 15-30 % range. For individual production processes of gluinos, the corrections can be much larger. The theoretical uncertainty in the prediction of the hard-scattering cross sections is typically reduced to the 10 % level.Comment: 45 pages, 16 Figures, LaTex. v2: published version. Grids with numerical results for the NLL cross sections for squark and gluino production at the 7/8 TeV LHC are included in the submission and are also available at http://omnibus.uni-freiburg.de/~cs1010/susy.htm

    Theory and LHC Phenomenology of Classicalon Decays

    Get PDF
    It has been recently proposed by Dvali et al that high energy scattering in non-renormalizable theories, like the higgsless Standard Model, can be unitarized by the formation of classical configurations called classicalons. In this work we argue that classicalons should have analogs of thermodynamic properties like temperature and entropy and perform a model-independent statistical mechanical analysis of classicalon decays. We find that, in the case of massless quanta, the decay products have a Planck distribution with an effective temperature T~1/r_* where r_* is the classicalon radius. These results, in particular a computation of the decay multiplicity, N_*, allow us to make the first collider analysis of classicalization. In the model for unitarization of WW scattering by classicalization of longitudinal Ws and Zs we get spectacular multi-W/Z final states that decay into leptons, missing energy and a very high multiplicity (at least 10) of jets. We find that for the classicalization scale, M_* = v=246 GeV (M_*=1 TeV) discovery should be possible in the present 7 TeV (14 TeV) run of the LHC with about 10 /fb (100 /fb) data. We also consider a model to solve the hierarchy problem, where the classicalons are configurations of the Higgs field which decay into to multi-Higgs boson final states. We find that, in this case, for M_*=500 GeV (M_*=1 TeV), discovery should be possible in the top fusion process with about 10 /fb (100 /fb) data at 14 TeV LHC.Comment: 43 Pages, 10 Figures; v2: added comment on the implications of a maximum allowed cut-off frequency analogous to the Debye frequenc

    New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC

    Full text link
    We introduce a novel technique designed to look for signatures of new physics in vector boson fusion processes at the TeV scale. This functions by measuring the polarization of the vector bosons to determine the relative longitudinal to transverse production. In studying this ratio we can directly probe the high energy E^2-growth of longitudinal vector boson scattering amplitudes characteristic of models with non-Standard Model (SM) interactions. We will focus on studying models parameterized by an effective Lagrangian that include a light Higgs with non-SM couplings arising from TeV scale new physics associated with the electroweak symmetry breaking, although our technique can be used in more general scenarios. We will show that this technique is stable against the large uncertainties that can result from variations in the factorization scale, improving upon previous studies that measure cross section alone
    • 

    corecore