838 research outputs found

    Exopolymeric Substances (EPS) Produced by Petroleum Microbial Consortia

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Microbial consortia recuperated of crude oil samples from the Pampo Sul field, Campos Basin, RJ, produced biosurfactants in mineral media containing glucose and 9,10-dihydrophenantrene, n-nonadecane, nonadecanoic acid, slightly biodegraded crude oil (P1) or heavily biodegraded crude oil (P2) as carbon sources. The production of exopolimeric substances (EPS) and petroleum biodegradation do not necessarily occur simultaneously. The EPS analyses by infrared and eletronspray ionization mass spectrometry (ESI-MS) revealed a mixture of surfactine isoforms. The biosurfactants reduced the surface tension of water and Zinder medium from 72.4 and 55.7 to 28.6 mN m(-1). Additionally, this surfactant emulsified different oils in water with performances similar to or better than of a conventional surfactant, Tween 80.21815171523FINEPPETROBRASCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Solar-type dynamo behaviour in fully convective stars without a tachocline

    Get PDF
    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016). Author's version, including Method

    Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)

    Get PDF
    Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM) fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models, which are GUTs with gravity mediated supersymmetry breaking and higher dimensional operators. Introducing non-renormalizable terms in the super- and K\"ahler potentials, we can obtain the correct SM fermion mass relations in the SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations, and in the SO(10) model. In the latter case the gauge symmetry is broken down to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate the realistic SM fermion mass relation in GUTs by considering the high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde

    Flavor Violating Higgs Decays

    Full text link
    We study a class of nonstandard interactions of the newly discovered 125 GeV Higgs-like resonance that are especially interesting probes of new physics: flavor violating Higgs couplings to leptons and quarks. These interaction can arise in many frameworks of new physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness. We rederive constraints on flavor violating Higgs couplings using data on rare decays, electric and magnetic dipole moments, and meson oscillations. We confirm that flavor violating Higgs boson decays to leptons can be sizeable with, e.g., h -> tau mu and h -> tau e branching ratios of order 10% perfectly allowed by low energy constraints. We estimate the current LHC limits on h -> tau mu and h -> tau e decays by recasting existing searches for the SM Higgs in the tau-tau channel and find that these bounds are already stronger than those from rare tau decays. We also show that these limits can be improved significantly with dedicated searches and we outline a possible search strategy. Flavor violating Higgs decays therefore present an opportunity for discovery of new physics which in some cases may be easier to access experimentally than flavor conserving deviations from the Standard Model Higgs framework.Comment: 39 pages, 12 figures, 3 tables; v2: Improved referencing, updated mu -> 3e bounds to include large loop contributions, corrected single top constraints; conclusions unchanged; matches version to be published in JHEP; v3: included 2-loop contributions in mu -> e conversion, improved discussion of tau -> 3 mu and of EDM constraints on FV top-Higgs couplings; conclusions unchange

    Neutron Scattering Studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor

    Get PDF
    We report inelastic neutron scattering experiments on single crystals of superconducting Ba0.67K0.33Fe2As2 (Tc = 38 K). In addition to confirming the resonance previously found in powder samples, we find that spin excitations in the normal state form longitudinally elongated ellipses along the QAFM direction in momentum space, consistent with density functional theory predictions. On cooling below Tc, while the resonance preserves its momentum anisotropy as expected, spin excitations at energies below the resonance become essentially isotropic in the in-plane momentum space and dramatically increase their correlation length. These results suggest that the superconducting gap structures in Ba0.67Ka0.33Fe2As2 are more complicated than those suggested from angle resolved photoemission experiments

    Fermi surface dichotomy of the superconducting gap and pseudogap in underdoped pnictides

    Full text link
    High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of the underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the SC gap develops on underdoping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors.Comment: Main Manuscript: 19 pages, 3 figures; Supplementary Information: 10 pages, 7 figure
    corecore