149 research outputs found

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria

    Get PDF
    Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively

    Control of style-of-faulting on spatial pattern of earthquake-triggered landslides

    Full text link
    Predictive mapping of susceptibility to earthquake-triggered landslides (ETLs) commonly uses distance to fault as spatial predictor, regardless of style-of-faulting. Here, we examined the hypothesis that the spatial pattern of ETLs is influenced by style-of-faulting based on distance distribution analysis and Fry analysis. The Yingxiu–Beichuan fault (YBF) in China and a huge number of landslides that ruptured and occurred, respectively, during the 2008 Wenchuan earthquake permitted this study because the style-of-faulting along the YBF varied from its southern to northern parts (i.e. mainly thrust-slip in the southern part, oblique-slip in the central part and mainly strike-slip in the northern part). On the YBF hanging-wall, ETLs at 4.4–4.7 and 10.3–11.5 km from the YBF are likely associated with strike- and thrust-slips, respectively. On the southern and central parts of the hanging-wall, ETLs at 7.5–8 km from the YBF are likely associated with oblique-slips. These findings indicate that the spatial pattern of ETLs is influenced by style-of-faulting. Based on knowledge about the style-of-faulting and by using evidential belief functions to create a predictor map based on proximity to faults, we obtained higher landslide prediction accuracy than by using unclassified faults. When distance from unclassified parts of the YBF is used as predictor, the prediction accuracy is 80%; when distance from parts of the YBF, classified according to style-of-faulting, is used as predictor, the prediction accuracy is 93%. Therefore, mapping and classification of faults and proper spatial representation of fault control on occurrence of ETLs are important in predictive mapping of susceptibility to ETLs

    Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene

    Full text link

    Special Issue of Mathematical Geosciences to Honor Frits Agterberg

    No full text
    corecore