111 research outputs found

    160 MeV H−H^- Injection into the CERN PSB

    Get PDF
    The H- beam from the proposed LINAC4 will be injected into the four existing rings of the PS Booster at 160 MeV. A substantial upgrade of the injection region is required, including the modification of the beam distribution system and the construction of a new H- injection system. This paper discusses beam dynamics and hardware requirements and presents the results of optimisation studies of the injection process for different beam characteristics and scenarios. The resulting conceptual design of the injection region is presented, together with the main hardware modifications and performance specifications

    Plans for a Superconducting H−^{-} LINAC (SPL) at CERN

    Get PDF
    As part of the upgrade of the LHC injector complex at CERN, the construction of a 4 GeV Superconducting Proton Linac (the SPL, in fact an H- accelerator) is planned to begin in 2012. Depending upon physics requests, it should be upgradeable to 5 GeV and multi-MW beam power at a later stage. The construction of Linac4, its low energy front end, has started at the beginning of 2008. A full project proposal with a cost estimate for the low power version of the SPL aimed at improving LHC performance has to be ready for mid-2011. As a first step towards that goal, essential machine parameters like RF frequency, cooling temperature and accelerating gradient have recently been revisited and plans have been drawn for designing and testing critical components

    Choice of Frequency, Gradient and Temperature for a Superconducting Proton Linac

    Get PDF
    The construction of a Superconducting Proton Linac is planned at CERN during the next decade. It is foreseen to be constructed in two stages: a low duty cycle, low-power linac (LPSPL) as an injector for a new 50 GeV synchrotron (PS2) replacing the present PS, which could be upgraded to a high-duty cycle, high-power linac (HPSPL), for the needs of future facility(ies) requiring a multi-MW beam power. In this paper we present the criteria which were used to choose the frequency, gradient, and cryogenic temperature of the SPL. Since these questions are common to other proposed high-power proton linacs, they may also be of use for other projects with similar specifications. The various design options are discussed as well as their impact on beam dynamics, cavity performance, power consumption, cryogenics,and overall efficiency

    Assessment of the basic parameters of the CERN Superconducting Proton Linac

    Get PDF
    The construction of a 4GeV Superconducting Proton Linac (the SPL) is now part of the Long Term Plan of CERN, and the construction of Linac4, its low-energy front end, has begun. For mid-2011 the existing conceptual design of the SPL has to be refined and transformed into a project proposal. As a first step, basic parameters like RF frequency, accelerating gradient and operating temperature of the superconducting cavities have been re-assessed, taking into account the experience accumulated in the world during the recent years, especially for the SNS and the ILC projects. The conclusions confirm the validity of the initial choices, namely the RF frequency of 704.4MHz and the cooling temperature of ~ 2K. However the assumed gradients are estimated as optimistic: additional tests are necessary during the coming years to properly define the values to be used in the SPL design. This analysis is documented and its results are explained in this report

    Pure spinor computation towards open string three-loop

    Full text link
    Using the recent results in the pure spinor formulation, we lay out a ground-work towards the full momentum space amplitudes of open superstrings at three-loop. After briefly reviewing the one-loop amplitude, we directly work out the two-loop and reproduce the result that was obtained by a symmetry argument. For the three-loop, first we use the two-loop regulator as a warm-up exercise. The result vanishes. We then employ the regulator that has been recently proposed by Aisaka and Berkovits (AB). It is noted that the terms in higher power in 1λλˉ\frac{1}{\lambda\bar{\lambda}} that render the two-loop regulator disqualified for the three-loop do not contribute. This with a few other indications suggests a possibility that the AB regulator might also lead to a vanishing result. Nevertheless, we argue that it is possible to acquire the three-loop amplitude, and present a result that we anticipate to be the three-loop amplitude.Comment: 41 pages, latex, cosmetic change
    • 

    corecore