49 research outputs found

    Development of Eosinophilic Airway Inflammation and Airway Hyperresponsiveness in Mast Cell–deficient Mice

    Get PDF
    Mast cells are the main effector cells of immediate hypersensitivity and anaphylaxis. Their role in the development of allergen-induced airway hyperresponsiveness (AHR) is controversial and based on indirect evidence. To address these issues, mast cell–deficient mice (W/W  v) and their congenic littermates were sensitized to ovalbumin (OVA) by intraperitoneal injection and subsequently challenged with OVA via the airways. Comparison of OVA-specific immunoglobulin E (IgE) levels in the serum and numbers of eosinophils in bronchoalveolar lavage fluid or lung digests showed no differences between the two groups of mice. Further, measurements of airway resistance and dynamic compliance at baseline and after inhalation of methacholine were similar. These data indicate that mast cells or IgE–mast cell activation is not required for the development of eosinophilic inflammation and AHR in mice sensitized to allergen via the intraperitoneal route and challenged via the airways

    New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production

    Full text link
    Since the work of Sauter, and Heisenberg, Euler and K\"ockel, it has been understood that vacuum polarization effects in quantum electrodynamics (QED) predict remarkable new phenomena such as light-light scattering and pair production from vacuum. However, these fundamental effects are difficult to probe experimentally because they are very weak, and they are difficult to analyze theoretically because they are highly nonlinear and/or nonperturbative. The Extreme Light Infrastructure (ELI) project offers the possibility of a new window into this largely unexplored world. I review these ideas, along with some new results, explaining why quantum field theorists are so interested in this rapidly developing field of laser science. I concentrate on the theoretical tools that have been developed to analyze nonperturbative vacuum pair production.Comment: 20 pages, 9 figures; Key Lecture at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields", 29 Sept - 2 Oct. 2008, Frauenworth Monastery, Germany; v2: refs updated, English translations of reviews of Nikishov and Ritu

    Supplementary Material for: Susceptibility to Vaccinia Virus Infection and Spread in Mice Is Determined by Age at Infection, Allergen Sensitization and Mast Cell Status

    No full text
    <i>Background:</i> Patients, especially young children, with atopic dermatitis are at an increased risk of developing eczema vaccinatum, a severe reaction to the smallpox vaccine, either through direct vaccination or indirect contact with a person recently vaccinated. <i>Methods:</i> Using a mouse model of infection, the severity of vaccinia-induced lesions was assessed from their appearance and viral DNA content. The response to vaccinia inoculation was assessed in young and adult mice, allergen-sensitized mice, and in mast cell-deficient mice. <i>Results:</i> Young age, sensitization to an allergen prior to infection, and a mast cell deficit, accomplished by using mast cell-deficient mice, resulted in more severe viral lesions at the site of inoculation, according to lesion appearance and viral DNA content. All three factors combined demonstrated maximal susceptibility, characterized by the severity of primary lesions and the development of secondary (satellite) lesions, as occurs in eczema vaccinatum in humans. Resistance to the appearance of satellite lesions could be restored by adoptive transfer of bone marrow-derived mast cells from either wild-type or cathelicidin-related antimicrobial peptide-deficient mice. Primary lesions were more severe following the latter transfer, indicating that cathelicidin-related antimicrobial peptide does contribute to the protective activity of mast cells against infection. <i>Conclusions:</i> The combination of young age, allergen sensitization and a mast cell deficit resulted in the most severe lesions, including satellite lesions. Understanding the factors determining the relative resistance/sensitivity to vaccinia virus will aid in the development of strategies for preventing and treating adverse reactions which can occur after smallpox vaccination

    Expression of AMPA/kainate receptors during development of chick embryo retina cells: in vitro versus in vivo studies

    Get PDF
    The activity and the subunit expression of [alpha]-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate ionotropic glutamate receptors were studied in retina cells developing in chick embryos and in retina cells cultured as retinospheroids, at the same stages of development. In the retinospheroids, the activity of the AMPA/kainate receptors was monitored by following the changes in the intracellular free calcium concentration ([Ca2+]i), in response to AMPA, kainate or to -glutamate, and the expression of the receptor subunits GluR1, GluR2/3, GluR4 and GluR6/7 was determined in the retinospheroids and in chick retinas by immunodetection using polyclonal antibodies. The changes in [Ca2+]i in response to 400 [mu]M kainate increased from 5 h in vitro to 3 days, and remained constant until day 14, whereas the [Ca2+]i in response to 500 [mu]M -glutamate or 400 [mu]M AMPA increased from 5 h in vitro to 3 days, and thereafter decreased slightly until day 14. The [Ca2+]i responses to kainate are mainly due to AMPA receptor stimulation, since the signals were abolished by LY303070, the AMPA receptor antagonist, and were not affected by MK-801, the NMDA receptor antagonist. In retinospheroids, the levels of expression of GluR1 subunit increased from 5 h in vitro until day 7, then decreased until day 14. The levels of expression of GluR2/3 and GluR4 subunits increased from 5 h in vitro until day 10, and remained constant until day 14. The levels of kainate receptor subunits GluR6/7 increased from 5 h in vitro until day 3, and thereafter decreased slightly until day 14. In the retinas, the expression of GluR1 and GluR6/7 subunits increased from day 8 until day 15, and then decreased until day 22 (post-natal 1). The subunits GluR2/3 and GluR4 increased from day 8 until day 18, and remained constant until day 22. The results suggest that AMPA/kainate receptors are expressed at early embryonic stages, although at low levels and before synapse formation (E12). However, the AMPA receptors are not completely functional at the first stage studied since they do not respond to the agonist AMPA. Also, the patterns of AMPA/kainate receptor subunit expression in retinospheroids of chick embryo retina cells cultured in vitro and in retina cells developing in the embryo (in vivo) were similar, indicating that the AMPA/kainate receptor subunits expression in these primary cultures mimics their expression in the developing chick retina.http://www.sciencedirect.com/science/article/B6T01-45CW0B3-1/1/a35858f1d7808b1301de428de93fa9e
    corecore