1,119 research outputs found
Assessing intonation skills in a tertiary music training programme
[Abstract]: Buttsworth, Fogarty, and Rorke (1993) reported the construction of a battery of tonal
tests designed to assess intonation abilities. A subset of the tests in the battery
predicted 36 per cent of final scores in an aural training subject in a tertiary music course. In
the current study, the original battery of fourteen tests was reduced to six tests and
administered three times throughout the academic year to a new sample (N = 87) of
tertiary music students. Three research questions were investigated. Firstly, it was
hypothesised that tests in the battery would discriminate among the different aural
classes at USQ, which were grouped according to ability level. The results from
discriminant function analyses provided strong support for this hypothesis. Secondly,
it was hypothesised that students should improve their performance on the pitch
battery across the three administrations. A repeated measures analysis of variance
failed to find evidence of overall improvement. Finally, it was hypothesised that there
would be significant differences on the intonation tests between musicians of different
instrumental families. Again, no overall differences were found. The results indicated
that intonation tests appear to tap an ability that (a) is not significantly modified by
training, (b) is more or less the same across different instrument families, and (c) is
related to success in music training programmes
High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering
Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed
It\u27s Not That We Care Less : Insights into Health Care Utilization for Comorbid Diabetes and Depression among Latinos
Despite robust knowledge regarding the socio-economic and cultural factors affecting Latino* access to healthcare, limited research has explored service utilization in the context of comorbid conditions like diabetes and depression. This qualitative study, embedded in a larger mixed-methods project, aimed to investigate perceptions held by Latinos and their social support systems (i.e., family members) regarding comorbid diabetes and depression and to identify barriers and facilitators to their help-seeking behaviors and treatment engagement. Bilingual and bicultural researchers conducted eight focus groups with 94 participants in a large U.S. metropolitan area and were primarily conducted in Spanish. The participants either had a diagnosis of diabetes and depression or were closely associated with someone who did. This study identified key individual and structural barriers and facilitators affecting healthcare access and treatment for Latinos living with comorbid diagnoses. A thematic analysis revealed structural barriers to healthcare access, including financial burdens and navigating healthcare institutions. Personal barriers included fears, personal responsibility, and negative family dynamics. Facilitators included accessible information, family support, and spirituality. These findings underscore the need to address these multi-level factors and for healthcare institutions and providers to actively involve Hispanic community members in developing services and interventions
Proteomic Analysis of Hippocampal Dentate Granule Cells in Frontotemporal Lobar Degeneration: Application of Laser Capture Technology
Frontotemporal lobar degeneration (FTLD) is the most common cause of dementia with pre-senile onset, accounting for as many as 20% of cases. A common subset of FTLD cases is characterized by the presence of ubiquitinated inclusions in vulnerable neurons (FTLD-U). While the pathophysiological mechanisms underlying neurodegeneration in FTLD-U have not yet been elucidated, the presence of inclusions in this disease indicates enhanced aggregation of one or several proteins. Moreover, these inclusions suggest altered expression, processing, or degradation of proteins during FTLD-U pathogenesis. Thus, one approach to understanding disease mechanisms is to delineate the molecular changes in protein composition in FTLD-U brain. Using a combined approach consisting of laser capture microdissection (LCM) and high-resolution liquid chromatography-tandem mass spectrometry (LC–MS/MS), we identified 1252 proteins in hippocampal dentate granule cells excised from three post-mortem FTLD-U and three unaffected control cases processed in parallel. Additionally, we employed a labeling-free quantification technique to compare the abundance of the identified proteins between FTLD-U and control cases. Quantification revealed 54 proteins with selective enrichment in FTLD-U, including TAR–DNA binding protein 43 (TDP-43), a recently identified component of ubiquitinated inclusions. Moreover, 19 proteins were selectively decreased in FTLD-U. Subsequent immunohistochemical analysis of TDP-43 and three additional protein candidates suggests that our proteomic profiling of FTLD-U dentate granule cells reveals both inclusion-associated proteins and non-aggregated disease-specific proteins. Application of LCM is a valuable tool in the molecular analysis of complex tissues, and its application in the proteomic characterization of neurodegenerative disorders such as FTLD-U may be used to identify proteins altered in disease
Human vascular adhesion proteın-1 (VAP-1): Serum levels for hepatocellular carcinoma in non-alcoholic and alcoholic fatty liver disease
<p>Abstract</p> <p>Background</p> <p>The incidence of hepatocellular cancer in complicated alcoholic and non-alcoholic fatty liver diseases is on the rise in western countries as well in our country. Vascular adhesion protein-1 (VAP-1) levels have been presented as new marker. In our study protocol, we assessed the value of this serum protein, as a newly postulant biomarker for hepatocellular cancer in patients with a history of alcoholic and non-alcoholic fatty liver diseases.</p> <p>Methods</p> <p>Pre-operative serum samples from 55 patients with hepatocellular cancer with a history of alcoholic and non-alcoholic fatty liver diseases and patients with cirrhosis were assessed by a quantitative sandwich ELISA using anti-VAP-1 mAbs. This technique is used to determine the levels of soluble VAP-1 (sVAP-1) in the serum.</p> <p>Results</p> <p>sVAP-1 levels were evaluated in patients with hepatocellular cancer and liver cirrhosis. There was a significant difference in mean VAP-1 levels between groups. Serum VAP-1 levels were found higher in patients with hepatocellular cancer.</p> <p>Conclusion</p> <p>These findings indicate that the serum level of sVAP-1 might be a beneficial marker of disease activity in chronic liver diseases.</p
The Flexure-based Microgap Rheometer (FMR)
Submitted to J. Rheol.We describe the design and construction of a new microrheometer designed to facilitate the viscometric study of complex fluids with very small sample volumes (1-10 μl)and gaps of micrometer dimensions. The Flexure-based Microgap Rheometer (FMR) is a
shear-rate-controlled device capable of measuring the shear stress in a plane Couette
configuration with directly-controlled gaps between 1 μm and 200 μm. White light
interferometry and a three-point nanopositioning stage using piezo-stepping motors are used to control the parallelism of the upper and lower shearing surfaces which are constructed from glass optical flats. A compound flexure system is used to hold the fluid sample testing unit between a drive spring connected to an ‘inchworm’ motor and an independent sensor spring. Displacements in the sensing flexure are detected using an inductive proximity sensor. Ready optical access to the transparent shearing surfaces enables monitoring of the structural evolution in the gap with a long working-distance video-microscope. This configuration then allows us to determine the microgap-dependent flow behavior of complex fluids over 5 decades of shear rate. We demonstrate the capability of the FMR by characterizing the complex stress and gap dependent flow behavior of a typical microstructured food product (mayonnaise) over the range of gaps from 8 to 100 μm and stresses from 10 to 1500 Pa. We correlate the gap-dependent rheological response to the microstructure of the emulsion and changes induced in the material by prolonged shearing.Dupont MIT Allianc
FUS Immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy
Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of alpha-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the 'loosely aggregated cytoplasmic inclusions,' 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer 'compact cytoplasmic inclusions' and 'tangled twine ball inclusions' were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations
Gpr37 Modulates Progenitor Cell Dynamics in a Mouse Model of Ischemic Stroke
The generation of neural stem and progenitor cells following injury is critical for the function of the central nervous system, but the molecular mechanisms modulating this response remain largely unknown. We have previously identified the G protein-coupled receptor 37 (GPR37) as a modulator of ischemic damage in a mouse model of stroke. Here we demonstrate that GPR37 functions as a critical negative regulator of progenitor cell dynamics and gliosis following ischemic injury. In the central nervous system, GPR37 is enriched in mature oligodendrocytes, but following injury we have found that its expression is dramatically increased within a population of Sox2-positive progenitor cells. Moreover, the genetic deletion of GPR37 did not alter the number of mature oligodendrocytes following injury but did markedly increase the number of both progenitor cells and injury-induced Olig2-expressing glia. Alterations in the glial environment were further evidenced by the decreased activation of oligodendrocyte precursor cells. These data reveal that GPR37 regulates the response of progenitor cells to ischemic injury and provides new perspectives into the potential for manipulating endogenous progenitor cells following stroke
- …