87 research outputs found

    Paleogenomic Analysis of the Short Arm of Chromosome 3 Reveals the History of the African and Asian Progenitors of Cultivated Rices

    Get PDF
    Rice is one of the most important crops, feeding more than half of the world population. There are two cultivated species, the African rice Oryza glaberrima and the Asian rice O. sativa. Although the African species is gradually replaced by O. sativa in most of African rice agrosystems, this species represents an important reservoir of genes of agronomical interest. Their exploitation for the development of modern African rice varieties requires a good understanding of the genetic relationships between the two cultivated species. We took advantage of the recent availability of the sequence of the chromosome 3 short arm of O. glaberrima to estimate the date of radiation between O. glaberrima and O. sativa lineages, using all the long terminal repeat (LTR)-retrotransposons as paleogenomic markers. We first demonstrated that in two distinct lineages, LTR-retrotransposons mutate at the same rate. Based on LTR-retrotransposons shared by both species in orthologous position, we then estimated that O. glaberrima and O. sativa progenitors diverged 1.2 Ma. This constitutes one of the first studies using such a large sample of transposable elements to reconstruct the phylogeny of species. Given the number of genome sequencing projects, there is no doubt that such approach will allow to resolve phylogenetic incongruities. The application of this method to other plant genomes will also facilitate further understanding of evolution of LTR-retrotransposons and eventually of the whole genome in divergent plant lineages

    Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory

    Get PDF
    RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory

    Smoking as a product of gene–environment interaction

    Get PDF
    A strong hereditary influence on smoking has been demonstrated. As one of the candidate genes in relation to smoking, the serotonin transporter gene (5-HTTLPR) has been suggested, however with conflicting results. In recent studies, it has been shown that genotypic and environmental (G*E) factors interact in the shaping of a variety of phenotypic expressions. The objective of the present study was to investigate the interaction between a variation in the 5-HTTLPR and family environment in relation to smoking habits, nicotine dependence, and nicotine and cotinine levels in hair samples

    Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    Get PDF
    The “arms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases
    corecore